Web-Books
im Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Seite - 58 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 58 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Bild der Seite - 58 -

Bild der Seite - 58 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text der Seite - 58 -

a b c d Figure2. Blinddeconvolutionof the syntheticallyblurred image fromFig.1(a)usingRRRLfor imageestimation, and thenonlinearPSFestimationmethod fromSection3.withdifferentnumbersof linearisation iterations. (a) 1 iteration. – (b)2 iterations. – (c)5 iterations. – (d)8 iterations. –From[7], adapted. a b c d Figure3.Blinddeconvolutionofanimageblurredduringacquisition. (a)Clippingfromaphotograph(Paris from Eiffeltoweratdusk)blurredbycamerashake,200×200pixels. –(b)ReconstructedimageandPSF,13×13pixels (inserted), usingRRRLfor imageestimationandPSFestimationaccording to [5],mx=my=13,α=0.002, β = 260, τ = 0.1,K = 300,Ku = 20. – (c) Same as (b) but with nonlinear PSF estimation Section 3., mx=my=13,α=0.0105,β=255, τ =0.1,K=300,Ku=20,Kh=8. – (d)Non-blindRRRL deconvolution resultwith themanually tunedPSF (shownas insert) from[13],α=0.002,Ku=30. ThePSF, 14×11pixels,hasbeengenerated fromanimpulseresponse. evident that introducing robust image estimation brings about a slight gain in reconstruction of small detail, but also an amplification of artifacts is observed which may be attributable to the mismatch between thedata termsunderlying the PSF estimation (non-robust) and non-blind deconvolution (ro- bust). Using robust estimation methods for both (d) leads to a result with visible gain in sharpness and fewer artifacts. In particular, fine details of the columns between the windows are reconstructed sharper in (d) than in (b). Regarding the visible translation by approx. 2 pixels between (d) and the two other results, it should be noted that shifting the PSF and image in opposing directions is an inherent degree of freedom of the convolution model (1). Note that this also poses a difficulty for quantitative evaluation of blind deconvolution methods: quantitative error measurements cannot be done without a registration step whose influence on the error values needs additional analysis. Since this isnot feasiblewithin thepresent paper,we restrict ourselves to avisual assessmentat thispoint. As discussed in Section 3. the non-linear system of equations arising in the PSF estimation is solved iteratively by linearisation. In Fig. 2 we demonstrate the evolution of estimated PSF and image with increasing number of linearisation iterations. With a single iteration, frame (a), the result is almost identicallytothelinearPSFestimationfromFig.1(c). Additional iterationsfirst leadtosomeartifacts, frame (b), which are apparently caused by the fact that the non-linear method places the PSF in this example at a translated position. With more iterations, the reconstruction quickly stabilises at the refined result, frame(d), which is numericallyconvergedandcorresponds to Fig.1(d). 58
zurück zum  Buch Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Titel
Proceedings
Untertitel
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Autoren
Peter M. Roth
Kurt Niel
Verlag
Verlag der Technischen Universität Graz
Ort
Wels
Datum
2017
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-527-0
Abmessungen
21.0 x 29.7 cm
Seiten
248
Schlagwörter
Tagungsband
Kategorien
International
Tagungsbände

Inhaltsverzeichnis

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Proceedings