Seite - 66 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Bild der Seite - 66 -
Text der Seite - 66 -
A B
C D Bold lines: edges of the triangles
Dashed lines: minimal heights
Large circles: limitation induced by ABC
Small circles: limitation induced by BCD
T1 T2
hT1 hT2
Figure 1: Triangle T1 = (A,B,C) with minimal height hT1 onC and triangle T2 = (C,D,B) with
minimal heighthT2 onD. Limiting the movement of all nodes in a triangle byα times the minimum of
the heights induces circles foreachnode, ofwhich thesmallestone is chosenasconstraints.
In order to apply the primal-dual algorithm, Problem (2) is reformulated as a saddle-point problem
according to
min
u∈Ω F(∆u) ⇐⇒ min
u∈U F(∆u)+IΩ(u) ⇐⇒ min
u∈U sup
w∈U 〈w,∆u〉−F∗(w)+IΩ(u), (5)
whereF(u) = 1
2 ‖u‖22, the indicator function of Ω, i.e., IΩ(u) = 0 foru∈Ω and∞otherwise, and
F∗ is theconvex conjugateofF, definedasF∗(w) := supu∈U〈w,u〉−F(u). Explicitly,weget
F∗(w) = sup
u∈U 〈w,u〉− 1
2 ‖u‖22 = 〈w,w〉− 1
2 ‖w‖22 = 1
2 ‖w‖22, (6)
where the second equality is due tou=w being the unique critical point ofu 7→ 〈w,u〉− 1
2 ‖u‖22,
which can be confirmed by differentiation, and hence, u= w being the unique global maximiser.
Thus, (2) is reformulatedas the followingsaddlepointproblem
min
u∈U max
w∈U L(u,w), whereL(u,w) = 〈w,∆u〉− 1
2 ‖w‖22 +IΩ(u). (7)
The following proposition shows that by solving (7), we indeed obtain a solution of the original
problem(2).
Proposition. The saddle point problem (7) with feasible set Ω defined as in (4) admits at least one
solution and for any saddle point (u+,w+) of (7), u+ is a solution of the original minimisation
problem (2).
Proof. Due to [7, VI Prop 2.4, p. 176], it is sufficient to show that forL:U×U→Rdefined as in
(7), foru∈U fixed,w 7→L(u,w) is concaveandupper semi-continuousonU, and forw∈U fixed,
u 7→L(u,w) is convexand lowersemi-continuousonU. Further,weneed toshowthatu 7→L(u,w)
is coercive for fixedw and that
lim
‖w‖→∞
w∈U inf
u∈U L(u,w) =−∞. (8)
Theconvexity/concavityandl.s.c./u.s.c. assumptionsaresatisfied, inparticularduetoΩbeingconvex
andclosed, andu 7→L(u,w) is coercivedue toΩbeingbounded. Further, forfixedu∈Ω,
lim
‖w‖→∞ 〈w,∆u〉−‖w‖22≤ lim‖w‖→∞‖w‖‖∆u‖− 1
2 ‖w‖22 = lim‖w‖→∞‖w‖ (
‖∆u‖− 1
2 ‖w‖ )
=−∞
andhence, (8)holds,yielding theexistenceofasaddlepoint(u+,w+). Due to[7, IIIProp3.1,p. 57],
the optimalityofu+ for (2) is adirect consequenceof (5).
4
66
Proceedings
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Titel
- Proceedings
- Untertitel
- OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Autoren
- Peter M. Roth
- Kurt Niel
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Wels
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-527-0
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 248
- Schlagwörter
- Tagungsband
- Kategorien
- International
- Tagungsbände