Web-Books
im Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Seite - 66 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 66 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Bild der Seite - 66 -

Bild der Seite - 66 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text der Seite - 66 -

A B C D Bold lines: edges of the triangles Dashed lines: minimal heights Large circles: limitation induced by ABC Small circles: limitation induced by BCD T1 T2 hT1 hT2 Figure 1: Triangle T1 = (A,B,C) with minimal height hT1 onC and triangle T2 = (C,D,B) with minimal heighthT2 onD. Limiting the movement of all nodes in a triangle byα times the minimum of the heights induces circles foreachnode, ofwhich thesmallestone is chosenasconstraints. In order to apply the primal-dual algorithm, Problem (2) is reformulated as a saddle-point problem according to min u∈Ω F(∆u) ⇐⇒ min u∈U F(∆u)+IΩ(u) ⇐⇒ min u∈U sup w∈U 〈w,∆u〉−F∗(w)+IΩ(u), (5) whereF(u) = 1 2 ‖u‖22, the indicator function of Ω, i.e., IΩ(u) = 0 foru∈Ω and∞otherwise, and F∗ is theconvex conjugateofF, definedasF∗(w) := supu∈U〈w,u〉−F(u). Explicitly,weget F∗(w) = sup u∈U 〈w,u〉− 1 2 ‖u‖22 = 〈w,w〉− 1 2 ‖w‖22 = 1 2 ‖w‖22, (6) where the second equality is due tou=w being the unique critical point ofu 7→ 〈w,u〉− 1 2 ‖u‖22, which can be confirmed by differentiation, and hence, u= w being the unique global maximiser. Thus, (2) is reformulatedas the followingsaddlepointproblem min u∈U max w∈U L(u,w), whereL(u,w) = 〈w,∆u〉− 1 2 ‖w‖22 +IΩ(u). (7) The following proposition shows that by solving (7), we indeed obtain a solution of the original problem(2). Proposition. The saddle point problem (7) with feasible set Ω defined as in (4) admits at least one solution and for any saddle point (u+,w+) of (7), u+ is a solution of the original minimisation problem (2). Proof. Due to [7, VI Prop 2.4, p. 176], it is sufficient to show that forL:U×U→Rdefined as in (7), foru∈U fixed,w 7→L(u,w) is concaveandupper semi-continuousonU, and forw∈U fixed, u 7→L(u,w) is convexand lowersemi-continuousonU. Further,weneed toshowthatu 7→L(u,w) is coercive for fixedw and that lim ‖w‖→∞ w∈U inf u∈U L(u,w) =−∞. (8) Theconvexity/concavityandl.s.c./u.s.c. assumptionsaresatisfied, inparticularduetoΩbeingconvex andclosed, andu 7→L(u,w) is coercivedue toΩbeingbounded. Further, forfixedu∈Ω, lim ‖w‖→∞ 〈w,∆u〉−‖w‖22≤ lim‖w‖→∞‖w‖‖∆u‖− 1 2 ‖w‖22 = lim‖w‖→∞‖w‖ ( ‖∆u‖− 1 2 ‖w‖ ) =−∞ andhence, (8)holds,yielding theexistenceofasaddlepoint(u+,w+). Due to[7, IIIProp3.1,p. 57], the optimalityofu+ for (2) is adirect consequenceof (5). 4 66
zurück zum  Buch Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Titel
Proceedings
Untertitel
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Autoren
Peter M. Roth
Kurt Niel
Verlag
Verlag der Technischen Universität Graz
Ort
Wels
Datum
2017
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-527-0
Abmessungen
21.0 x 29.7 cm
Seiten
248
Schlagwörter
Tagungsband
Kategorien
International
Tagungsbände

Inhaltsverzeichnis

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Proceedings