Seite - 93 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Bild der Seite - 93 -
Text der Seite - 93 -
6. Conclusion
We have presented a segment-based object recognition and pose estimation approach. The proposed
bottom-up segmentation strategy reduces the complexity of the recognition task in an iterative way.
The geometrical cues of the model-free input segmentation can successfully be exploited in order
to improve recognition rates in occluded scenes. The proposed segment-based recognition and pose
estimation approach relies on correspondence-based recognition. False hypothesis are suppressed
by adapting the cardinality of consistent correspondence groups. The estimated 6DOF pose infor-
mation can effectively be used in order to resolve over- and under-segmentation of the model-free
input stream. The suitability of our approach was demonstrated on 24 scenes. The complexity of
the evaluated dataset reaches its maximum in assembled object compositions. The efficiency of the
segment-based object recognition and pose estimation is bound to the amount of under-segmentation
in the surfacepatch.
(a) (b) (c) (d)
Figure 7: Segmentation comparison. (a) RGB input. (b) Model-free segmentation. (c) Model-based
segmentation (baseline). Unrecognizableobjects arecolored black. (d)Bottom-upsegmentation.
References
[1] A. Abramov, J. Papon, K. Pauwels, F. Wo¨rgo¨tter, and B. Dellen. Depth-supported real-time
video segmentation with the kinect. In IEEE workshop on the Applications of Computer Vision
WACV, 2012.
[2] ErenErdalAksoy,AlexeyAbramov, JohannesDo¨rr,KeJunNing,BabetteDellen, andFlorentin
Wo¨rgo¨tter. Learning the semantics of object-action relations by observation. I. J. Robotic Res.,
30:1229–1249,2011.
[3] AitorAldoma,Zoltan-CsabaMarton,FedericoTombari,WalterWohlkinger,ChristianPotthast,
Bernhard Zeisl, Radu Bogdan Rusu, Suat Gedikli, and Markus Vincze. Tutorial: Point cloud
93
Proceedings
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Titel
- Proceedings
- Untertitel
- OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Autoren
- Peter M. Roth
- Kurt Niel
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Wels
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-527-0
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 248
- Schlagwörter
- Tagungsband
- Kategorien
- International
- Tagungsbände