Web-Books
im Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Seite - 105 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 105 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Bild der Seite - 105 -

Bild der Seite - 105 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text der Seite - 105 -

Ona Fast Implementationofa2D-Variant of Weyl’sDiscrepancyMeasure Christian Motz1 ,BernhardA.Moser1 Knowledge-BasedVision Systems SoftwareCompetenceCenterHagenberg,Austria christian.motz@scch.at, bernhard.moser@scch.at Abstract Applying the concept of Hermann Weyl’s discrepancy as image similarity measure leads to outstand- ingrobustnessproperties fortemplatematching. However, incomparisonwithstandardmeasuresthis approach iscomputationallymore involving. Thispaperanalyzes thismeasure fromthepointofview of efficient implementation for embedded vision settings. A fast implementation is proposed based on vectorization of summed-area tables, resulting in a speed-up factor 16 compared to a standard integral imagebased computation. 1. Introduction In this paper we take up a novel concept of similarity measure due to [1] and investigate its applica- bility for the requirements of embedded vision. The core idea of this measure is its design principle based on a family of subsets rather than evaluating the aggregation of point-wise comparisons on a pixel-by-pixel level. Incontrast topixel-by-pixelbasedapproacheswithsubsequentcommutativeag- gregation such as mutual information of normalized cross correlation the subset-based approach also takes spatial arrangements into account which makes this approach interesting for pattern analysis andmatchingpurposes [2]. ThismeasuregoesbacktoH.Weylalready100yearsagoandwasstudiedin thecontextofevaluating the quality of pseudo-random numbers and measuring irregularities of probability distributions [3]. Forone-dimensional signals (vectors) it isdefinedas ‖(x1, . . . ,xn)‖D= max 1≤a,b≤n | b∑ i=a xi|= max r {0, r∑ i=1 xi}−min s {0, s∑ i=1 xi} Interestingly, this measure not only plays a central role in discrepancy theory which is related to low complexityalgorithmicdesignbymeansof lowdiscrepancysequences [4],butas foundout recently, also inotherfieldsofapplications, e.g. inevent-basedsignalprocessing [5,6], randomwalkanalysis [7]and imageandvolumetricdataanalysisbyextending it tohigherdimensionsbymeansof integral images [1]. As pointed out in [1] the extension is not unique. A possible extension is given by Equation (1). 105
zurück zum  Buch Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Titel
Proceedings
Untertitel
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Autoren
Peter M. Roth
Kurt Niel
Verlag
Verlag der Technischen Universität Graz
Ort
Wels
Datum
2017
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-527-0
Abmessungen
21.0 x 29.7 cm
Seiten
248
Schlagwörter
Tagungsband
Kategorien
International
Tagungsbände

Inhaltsverzeichnis

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Proceedings