Seite - 106 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Bild der Seite - 106 -
Text der Seite - 106 -
(a) test image (b) test image with Gaussian noise
(SNR=3) (c) test image with Gaussian noise
(SNR= 1.5)
(d) reference (e)hitmap (SNR=3) (f)hitmap (SNR=1.5)
Figure 1. Illustration of a pattern matching problem: find reference image in the test image. The images are
taken from frame 697 and frame 705 of the EC Funded CAVIAR project/IST 2001 37540 (”Shopping Center in
Portugal”,”OneLeaveShop2cor”). The hitmap iscomputed using the measure (1)
‖f‖D := max {
max
0≤k≤N,0≤l≤M { k∑
i=0 l∑
j=0 I(i,j)}− min
0≤k≤N,0≤l≤M {
k∑
i=0 l∑
j=0 I(i,j)} ,
max
0≤k≤N,0≤l≤M {
k∑
i=0 l∑
j=0 I(N−i,j)}− min
0≤k≤N,0≤l≤M { k∑
i=0 l∑
j=0 I(N−i,j)},
max
0≤k≤N,0≤l≤M { k∑
i=0 l∑
j=0 I(i,M−j)}− min
0≤k≤N,0≤l≤M { k∑
i=0 l∑
j=0 I(i,M−j)},
max
0≤k≤N,0≤l≤M { k∑
i=0 l∑
j=0 I(N−i,M−j)}− min
0≤k≤N,0≤l≤M {
k∑
i=0 l∑
j=0 I(N−i,M−j)}
}
(1)
For registrationand templatematchingpurposes thediscrepancymeasure isappliedon thedifference
of the corresponding images. To be more precise, the images are considered as two-dimensional
functionson the latticeof integers withwithdefault values0 outside theproper frameof the images.
Thismeasure satisfies the followingdesirable registration properties (seealso [8,9]):
[R1] avanishingdistanceentails avanishingextentofmisalignmentand viceversa,
106