Web-Books
im Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Seite - 108 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 108 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Bild der Seite - 108 -

Bild der Seite - 108 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text der Seite - 108 -

transformationsasexplainedabove: Π1(x,y) = Π(x,y) (2) Π2(x,y) = { Π(W,y)−Π(x,y) ifx 6=W, Π(W,y) ifx=W. Π3(x,y) = { Π(x,H)−Π(x,y) ify 6=H, Π(x,H) ify=H. Π4(x,y) =          A(x,y) ifx 6=W,y 6=H, Π(x,H)−Π(x,y) ifx=W,y 6=H, Π(W,y)−Π(x,y) ifx 6=W,y=H, Π(x,y) ifx=W,y=H. A(x,y) = Π(W,H)+Π(x,y)−Π(W,y)2−Π(x,H) (3) W indicates the last validx index of a row andH the last validy index of a column. Care has to be taken, if any index lies on the edge: Here, some components simply refer to the same area and are equal. Now,wemakeuseoftransformationswhichthesummationtermsareinvariant to: weareinterestedin the difference between maximum and minimum of the summation. Thus, adding a constant factor to allelementswithin the integral imagewillnotaffect thedifferencebetweenmaximumandminimum. When it comes to (3), the term Π(W,H) clearly is constant, neither depending on index variablex nor on y. As a result, it can be omitted for the discrepancy norm calculation. Note that this needs to be compensated in the others cases of Π4, too. Taking the constraint for the indexes into account, Equations (4) and (5) areobtained: Π˜4(x,y) =          A˜(x,y) ifx 6=W,y 6=H, −Π(W,y) ifx=W,y 6=H, −Π(x,H) ifx 6=W,y=H, 0 ifx=W,y=H. , (4) A˜(x,y) = Π(x,y)−Π(W,y)−Π(x,H). (5) 2.1. Reducing the compareoperations So far, the discrepancy norm in 2D has been reduced to computing a single integral image and ex- pressing the other forms based on this single one. It still requires 8 compare operations per pixel: one for the minimum, one for the maximum and this has to be done four times for the different com- ponents. Some of these operations are redundant if we concentrate on a specific row, meaning y is constant. Applying this method to Π2 of Equation (2), we obtain equations (6) and (7) which differ only by a constant and a sign. The negative sign will swap minimum and maximum. As a result, the second component can be deduced with simple operations that are only necessary at the end of each 108
zurück zum  Buch Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Titel
Proceedings
Untertitel
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Autoren
Peter M. Roth
Kurt Niel
Verlag
Verlag der Technischen Universität Graz
Ort
Wels
Datum
2017
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-527-0
Abmessungen
21.0 x 29.7 cm
Seiten
248
Schlagwörter
Tagungsband
Kategorien
International
Tagungsbände

Inhaltsverzeichnis

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Proceedings