Seite - 196 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Bild der Seite - 196 -
Text der Seite - 196 -
Byadding thechangeofx,y andθ inone timestep to thepreviouspose, the robotsposeatanygiven
timecanbecalculated recursively.
xt(xt−1,u) =
xt=xt−1 +v ·cos(θt−1)
·∆tyt=yt−1
+v ·sin(θt−1) ·∆t
θt= θt−1 + v·tan(ϕ)
wwheelbase ·∆t
(1)
The change of the pose is represented by the jacobian matrixG(xt−1,u), which is the derivative of
theposext−1 with respect to theposext−1.
G= ∂xt(xt−1,u)
∂xt−1 =
1 0 −v ·sin(θt−1)
·∆t0
1 v ·cos(θt−1) ·∆t
0 0 1
(2)
The jacobian matrixV (xt,u) is the derivative of the posext−1 with respect to the motion command
u. This equals thechangeof themotion.
V = ∂xt(xt−1,u)
∂u =
cos(θt−1) ·∆t
0sin(θt−1)
·∆t 0
tan(θt−1)·∆t
wwheelbase v·∆t
wwheelbase·cos2(θt−1)
(3)
TheerrormatrixM (u,α)considers theeffectofmotionerrors,while theparameterαconsiders their
severity.
M= (
α1v 2 +α2ϕ 2 0
0 α3v 2 +α4ϕ 2 )
(4)
ThecovariancematrixPt contains the uncertaintyof thepose.
Pt=G ·Pt−1 ·GT+V ·M ·VT (5)
The first term of calculation 5 represents the pose prediction and the second term the uncertainty in
the accuracy of the motion. The covariance can be visualized by plotting the ellipse defined by the
eigen-vectors and the eigen-values of this matrix. Without any correction, the covariance ellipse will
growwhenever the robotmoves. Thegrowthrateof thisellipse isdefinedbyαwhichdependson the
robot and its environment.
(a) (b)
Figure3: The (a) real robot and its (b) simulation.
196
Proceedings
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Titel
- Proceedings
- Untertitel
- OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Autoren
- Peter M. Roth
- Kurt Niel
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Wels
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-527-0
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 248
- Schlagwörter
- Tagungsband
- Kategorien
- International
- Tagungsbände