Web-Books
im Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Seite - 211 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 211 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Bild der Seite - 211 -

Bild der Seite - 211 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text der Seite - 211 -

Thestartingpoint is theProjectionEquationofanentirearmasakinematicchain Nj∑ b=1 [ ( ∂vs ∂q˙j )T ( ∂ωs ∂q˙j )T ] b [ p˙+ ω˜Rp− fe L˙+ ω˜RL−Me ] b (1) with indexj=1,2,3 foreacharm.Nj is thenumberofbodiesand q˙j= ( q˙p,j q˙a,j )T isdescribing velocity of each subsystem. Furthermore, vs,ωs are the absolute velocities of the center of gravity (CoG),ωR is the angular velocity of a chosen reference frame,p,L are the linear and angularmo- menta, respectively,while fe,Me are theapplied forces of eachbody. Equation1 leads to themotion equationofeacharmmodeledasa subsystem Mjq¨j+Cjq˙j−Qj=uj. (2) Mj is themassmatrix,Cj is the Coriolis andCentrifugalmatrix,Qj are the remaining forces and uj= ( 0 Mj )Twith themotor torqueMj describes the control forces of each arm. Furthermore, the equations of each arm (Eq. 1) can be assembled to themotion equation of the unconstrained system M(q)q¨+C(q, q˙)q˙+Q(q, q˙)=u, (3) withqas thegeneralizedcoordinateswritten inanarbitrarysequence, f.e. q= ( qp,1 qp,2 qp,3 qa,1 qa,2 qa,3 )T . (4) MoreoverM is themassmatrix ,C isCoriolis andCentrifugalmatrix ,Qare the remainingand u= ( 0 c ) , u∈Rn, c∈Rm, c=(M1 M2 M3 )T . (5) are thecontrol forces.Vectorccontains the threemotor torques. Detailedcalculationsaboutdynamicalmodelingof subsystemscanbefound in [1], [3]. 3.2. SubsystemConstraints As described in the section before, the arms are modeled bymeans of subsystemmodeling. Af- terwards, these motion equations are assembled to an entire unconstrained system. Note that the sequence of joint coordinates q (Eq. 4) is arbitrary. In the unconstrainedmodel the arms are not connected to theplatform.Therefore,rgeometric h(q)=0, h∈Rr (6) respectivelykinematicconstraints (with theJacobianmatrixJ) h˙(q)= ( ∂h ∂q ) q˙=Jq˙=0, J∈Rr,n (7) have tobebuilt toconnect themtogether. Thegeometricalconstraints represents the linkagebetween the revolute joints and theEE.Thus, two independent loops, eachwith two independent constraints (⇒ r = 4) can be located. Finally, after installing the constraint forces JT(q)λ into themotion equationof theunconstrainedsystem, theentiremodelhasa structure like M(q)q¨+C(q, q˙)q˙+Q(q, q˙)+JT(q)λ = u (8) Jq˙ = 0. (9) Equation8 is theLagrangianmotionequationoffirst kind. 211
zurück zum  Buch Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Titel
Proceedings
Untertitel
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Autoren
Peter M. Roth
Kurt Niel
Verlag
Verlag der Technischen Universität Graz
Ort
Wels
Datum
2017
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-527-0
Abmessungen
21.0 x 29.7 cm
Seiten
248
Schlagwörter
Tagungsband
Kategorien
International
Tagungsbände

Inhaltsverzeichnis

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Proceedings