Web-Books
im Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Seite - 218 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 218 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Bild der Seite - 218 -

Bild der Seite - 218 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text der Seite - 218 -

For a signal energy optimal manipulationof the robot a cost functional is introduced, which consists of the quadratic input signals in every time step and of a so-called Scrap-function which defines the end pointdeviation. TheidentifiedmovementsweretestedonaPUMAsixaxisrobot. Withthemeasuredcontrolvariables the required energy was evaluated. Based on this test data a considerably energy reduction was detected. 2. Problem definition Atfirst, let usconsider anonlineardynamical system q˙=v M(q)v˙= f˜(q,v,u,t), (1) where q ∈ Rn is the vector of generalized coordinates and v ∈ Rn is the vector of generalized velocities. In addition,M is then×nmass matrix and f˜ ∈ Rn the force vector. The vectoru indicates thecontrolvariables inan openedorenclosed regionΓ⊆Rm. By introducing thevectorof statevariablesxT=(qTvT)wemayrewriteEquation(1) by x˙=f(x,u,t) x(t0)=x0. (2) In general the force vectorf is a continuous vector field which depends on the statesx, controlsu andontimet. In robotics, thepositionandvelocityof the toolcenterpoint (TCP)willbeofparticular interest instead of the joint angles and angular velocities. Hence, the system outputy∈Rl is given by y=g(x). In order tomeet apredefined end pointwehave tosatisfy theboundarycondition g(x(tf))= y¯. (3) However,wesubstitute theboundaryconditionofEquation (3)by theoptimalcontrolproblem x˙=f(x,u,t) J= ∫ tf t0 h(x,u,t) dt+S(tf,x(tf))−→Min. (4) where the integraldescribes theenergy consumptionand theScrap-functionS includes theend point error. If theclosed regionΓ is not empty the solutionof the optimalcontrol problem of Equation (4) leads toan energy optimalmanipulationof thedynamical systemofEquation (2). 3. Gradient computation To determine thegradient of thecost functional (4)wefirst add zero terms to it: J= ∫ tf t0 h(x,u,t)+pT [f(x,u,t)− x˙]︸ ︷︷ ︸ =0Eq. (2) dt+S(tf,x(tf)) (5) 218
zurück zum  Buch Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Titel
Proceedings
Untertitel
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Autoren
Peter M. Roth
Kurt Niel
Verlag
Verlag der Technischen Universität Graz
Ort
Wels
Datum
2017
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-527-0
Abmessungen
21.0 x 29.7 cm
Seiten
248
Schlagwörter
Tagungsband
Kategorien
International
Tagungsbände

Inhaltsverzeichnis

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Proceedings