Seite - 224 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Bild der Seite - 224 -
Text der Seite - 224 -
Furthermore, the proposed identification can be done during operation. Instead of the forward simu-
lationthemeasuresof thepreviousmanipulationcanbeusedtosolvetheadjointsystemandcalculate
the gradient. Hence, the defined cost functional, and therefore the signal energy, decreases during
the manipulationof the robot. A big advantage is that it is not necessary to exchange any part of the
robot,onlyan updateof the robotcontrol is required.
Acknowledgment
Thisprojectwassupportedby theprogram”RegionaleWettbewerbsfa¨higkeitO¨O2010-2013”,which
isfinanced by theEuropean RegionalDevelopmentFund and thegovernmentofUpperAustria.
References
[1] S.Reichl,W.Steiner.TheOptimalControlApproachtoDynamicalInverseProblems. Journal
of DynamicSystems, Measurement,andControl.Vol.134, Is. 2, 2012
[2] K. Nachbagauer, S. Oberpeilsteiner,K. Sherif, W.Steiner. TheUseof theAdjointMethodfor
Solving Typical Optimization Problems in Multibody Dynamics. Journal of Computational
and NonlinearDynamics. 2014
[3] Bryson, A., Ho,Y.: AppliedOptimalControl. Hemisphere, Washington,DC(1975)
[4] Eberhard, P.: Adjoint Variable Method for Sensitivity Analysis of Multibody Systems Inter-
preted as a Continuous, Hybrid Form of Automatic Differentiation. In: Proc. of the 2nd Int.
Workshopon ComputationalDifferentiation,SantaFe. Philadelphia,pp. 319–328(1996)
[5] Haug, E., Wehage, R., Mani, N.: Design Sensitivity Analysis of Large-Scaled Constrained
Dynamic Mechanical Systems. Journal of Mechanisms, Transmissions, and Automation in
Design 106(2),156–162(1984)
[6] Bottasso, C., Croce, A., Ghezzi, L., Faure, P.: On the Solution of Inverse Dynamics and Tra-
jectory Optimization Problems for Multibody Systems. Multibody System Dynamics 11(1),
1–22 (2004)
[7] Bertolazzi, E., Biral, F., Lio, M.D.: Symbolic-Numeric Indirect Method for Solving Optimal
Control Problems for Large Multibody Systems. Multibody System Dynamics 13, 233–252
(2005)
[8] H.J. Kelley. Method of Gradients, Optimization techniques with applications to aerospace
systems Mathematics in Scienceand Engineering,ElsevierScience, 1952
[9] A.E. Bryson. Optimal Programming Problems with Inequality Constraints II: Solution by
Steepest-Ascent AIAA Journal, (1964), 25-34.
[10] J.F. Bonnans, J.C. Gilbert, C. Lemare´chal, C.A. Sagastiza´bal. Numerical Optimization - The-
oretical andPracticalAspects. SpringerBerlin Heidelberg, 2006
[11] Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding to a
change inoneelementofagivenmatrix. Ann. Math.Statist., 21(1):124–127,031950.
224
Proceedings
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Titel
- Proceedings
- Untertitel
- OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Autoren
- Peter M. Roth
- Kurt Niel
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Wels
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-527-0
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 248
- Schlagwörter
- Tagungsband
- Kategorien
- International
- Tagungsbände