Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 7 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 7 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 7 -

Bild der Seite - 7 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 7 -

Energies2018,11, 2226 It isnoticed that thereare somesignificantdifferencesbetween theFOAandPSOalgorithms. For FOA, the taste concentration (S) is used todetermine the individual position of each fruit fly, andthehighestodorconcentration in thispopulation is retainedalongwith thexandycoordinates; eventually, theDrosophilapopulationusesvisiontoflyto thisposition. Therefore, it isbasedonthe taste concentration tocontrol the searchingdirection tofindout theoptimal solution. For thePSO algorithm, the inertiaweightcontrols the impactof thepreviousvelocityof theparticleon itscurrent onebyusingtwopositiveconstantscalledaccelerationcoefficientsandtwoindependentuniformly distributedrandomvariables. Therefore, it isbasedonthe inertiaweight tocontrol thevelocity tofind out theoptimalsolution. Thus, aiming to deal with the inherent drawback of FOA, i.e., suffering from premature convergenceortrappinginto localoptimaeasily, thispapertries tousetheQCMtoempowereachfruit flytopossessquantumbehavior (namelyQFOA)duringthemodelingprocesses.At thesametime, thecatmappingfunction is introducedintoQFOA(namelyCQFOA)to implement thechaoticglobal perturbationstrategytohelpafruitflyescapefromthe localoptimawhenthepopulation’sdiversity is poor. Eventually, theproposedCQFOAisemployedtodeterminetheappropriateparametersofan LS-SVRmodelandincrease the forecastingaccuracy. 2.2.2.QuantumComputingMechanismforFOA (1) QuantizationofFruitFlies In the quantum computing process, a sequence consisting of quantumbits is replaced by a traditional sequence. Thequantumfruitfly isa linearcombinationofstate |0〉andstate |1〉,whichcan beexpressedas inEquation(17) [34,35]: |ϕ〉= α|0〉+ β|1〉, (17) whereα2 andβ2 are theprobabilityofstates, |0〉and |1〉, respectively, satisfyingα2+β2=1,and(α,β) arequbitscomposedofquantumbits. Aquantumsequence, i.e., a feasible solution, canbeexpressedasanarrangementof lqubits, asshowninEquation(18) [34,35]: qi= { α1 α2 · · · αl β1 β2 · · · βl } , (18) where the initial values of αj and βj are all set as 1/ √ 2 tomeet the equity principle, α2j +β 2 j = 1 (j=1,2, . . . , l),which isupdatedthroughthequantumrevolvingdoorduringthe iteration. Conversionbetweenquantumsequenceandbinarysequence is thekeytoconvertFOAtoQFOA. Randomlygeneratearandomnumberof [0,1], randj, if randj≥α2j , thecorrespondingbinaryquantum bitvalue is1,otherwise,0,asshowninEquation(19): xj= { 1 randj≥α2j 0 else . (19) Usingtheabovemethod, thequantumsequence,q, canbe transformedintoabinarysequence,x; thentheoptimalparameterproblemofanLS-SVRmodelcanbedeterminedusingQFOA. (2) QuantumFruitFlyPositionUpdateStrategy In theQFOAprocess, thepositionofquantumfruitflies representedbyaquantumsequence is updatedtofindmore feasiblesolutionsandthebestparameters. Thispaperusesquantumrotation to update thepositionofquantumfruitflies. Thequantumpositionof individual i (thereare in totalN quantumfruitflies) canbeextendedfromEquation(18)andisexpressedas inEquation(20): 7
zurück zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies