Page - 7 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 7 -
Text of the Page - 7 -
Energies2018,11, 2226
It isnoticed that thereare somesignificantdifferencesbetween theFOAandPSOalgorithms.
For FOA, the taste concentration (S) is used todetermine the individual position of each fruit fly,
andthehighestodorconcentration in thispopulation is retainedalongwith thexandycoordinates;
eventually, theDrosophilapopulationusesvisiontoflyto thisposition. Therefore, it isbasedonthe
taste concentration tocontrol the searchingdirection tofindout theoptimal solution. For thePSO
algorithm, the inertiaweightcontrols the impactof thepreviousvelocityof theparticleon itscurrent
onebyusingtwopositiveconstantscalledaccelerationcoefficientsandtwoindependentuniformly
distributedrandomvariables. Therefore, it isbasedonthe inertiaweight tocontrol thevelocity tofind
out theoptimalsolution.
Thus, aiming to deal with the inherent drawback of FOA, i.e., suffering from premature
convergenceortrappinginto localoptimaeasily, thispapertries tousetheQCMtoempowereachfruit
flytopossessquantumbehavior (namelyQFOA)duringthemodelingprocesses.At thesametime,
thecatmappingfunction is introducedintoQFOA(namelyCQFOA)to implement thechaoticglobal
perturbationstrategytohelpafruitflyescapefromthe localoptimawhenthepopulation’sdiversity is
poor. Eventually, theproposedCQFOAisemployedtodeterminetheappropriateparametersofan
LS-SVRmodelandincrease the forecastingaccuracy.
2.2.2.QuantumComputingMechanismforFOA
(1) QuantizationofFruitFlies
In the quantum computing process, a sequence consisting of quantumbits is replaced by a
traditional sequence. Thequantumfruitfly isa linearcombinationofstate |0〉andstate |1〉,whichcan
beexpressedas inEquation(17) [34,35]:
|ϕ〉= α|0〉+ β|1〉, (17)
whereα2 andβ2 are theprobabilityofstates, |0〉and |1〉, respectively, satisfyingα2+β2=1,and(α,β)
arequbitscomposedofquantumbits.
Aquantumsequence, i.e., a feasible solution, canbeexpressedasanarrangementof lqubits,
asshowninEquation(18) [34,35]:
qi= {
α1 α2 · · · αl
β1 β2 · · · βl }
, (18)
where the initial values of αj and βj are all set as 1/ √
2 tomeet the equity principle, α2j +β 2
j = 1
(j=1,2, . . . , l),which isupdatedthroughthequantumrevolvingdoorduringthe iteration.
Conversionbetweenquantumsequenceandbinarysequence is thekeytoconvertFOAtoQFOA.
Randomlygeneratearandomnumberof [0,1], randj, if randj≥α2j , thecorrespondingbinaryquantum
bitvalue is1,otherwise,0,asshowninEquation(19):
xj= {
1 randj≥α2j
0 else . (19)
Usingtheabovemethod, thequantumsequence,q, canbe transformedintoabinarysequence,x;
thentheoptimalparameterproblemofanLS-SVRmodelcanbedeterminedusingQFOA.
(2) QuantumFruitFlyPositionUpdateStrategy
In theQFOAprocess, thepositionofquantumfruitflies representedbyaquantumsequence is
updatedtofindmore feasiblesolutionsandthebestparameters. Thispaperusesquantumrotation to
update thepositionofquantumfruitflies. Thequantumpositionof individual i (thereare in totalN
quantumfruitflies) canbeextendedfromEquation(18)andisexpressedas inEquation(20):
7
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik