Seite - 16 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 16 -
Text der Seite - 16 -
Energies2018,11, 2226
Figure3.ForecastingvaluesofLS-SVR-CQFOAandothermodels forGEFCom2014(Jan.).
7LPH
Actualvalue BPNN LSSVRCQPSO
LSSVRCQTS LSSVRCQGA LSSVRCQBA
LSSVRFOA LSSVRQFOA LSSVRCQFOA
7LPH
Figure4.ForecastingvaluesofLS-SVR-CQFOAandothermodels forGEFCom2014(July).
Tables 7–9 indicate the evaluation results from different forecasting accuracy indexes for
IDAS2014, GEFCom2014 (Jan.) andGEFCom2014 (July), respectively. For Table 7, the proposed
LS-SVR-CQFOAmodel achieves smaller values for all employedaccuracy indexes than the seven
othermodels: RMSE (14.10),MAPE (2.21%), andMAE(13.88), respectively. ForTable 8, similarly,
theproposedLS-SVR-CQFOAmodelalsoachievessmallervalues forall employedaccuracy indexes
compared to thesevenothermodels: RMSE(40.62),MAPE(1.02%), andMAE(39.76), respectively.
Similarly inTable9, theproposedLS-SVR-CQFOAmodelalsoachievessmallervaluesforallemployed
16
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik