Seite - 72 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 72 -
Text der Seite - 72 -
Energies2018,11, 3433
4.3. LongShort-TermMemoryLayer
TheLSTMcan capture long-termdependencies in time-stamps; therefore, it can address the
vanishinggradientproblems. In theproposedmethod, thenumberofhiddenlayers increasesdueto
thedecompositionof inputdata,but thevanishinggradientproblemissolvedthroughthememory
cell structurewiththree-stepregularization. Inaddition, tominimizethecovariateshiftproblem,batch
normalization isperformedprior to theactivationphaseof the input. IMFsandreference loadprofiles
are trainedateachLSTMlayerandhavepredictivevalues, all ofwhicharesummedtopredict the
loadprofile.
4.4.ModelConstruction
4.4.1.HyperparameterTuningandTrainingOptions
TheLSTMmodelhas several hyperparameters suchas thenumberof inputneurons, hidden
layers, inputwindowsize, numberof epochs, regularizationweight, batch size, and learning rate.
Thewindow size of input and output parameters depends on the time scale of load forecasting.
The inputneuronparameter isdeterminedbythedimensionsof the inputdata. The inputdimension
of theproposedmethodis11,which is thesumof thereferenceprofileand10IMFsignals.Weselected
thehyperparametersandusedADAMoptimization,oneof theoptimization techniquesused indeep
learning[30–40].
4.4.2. TrainingandTesting
TheoverallAMIdatasetofeachdayisdividedintoaratioof70:15:15 for thepurposesofmodel
training,validation,andtesting, respectively.
4.4.3. PerformanceMeasures
Therootmeansquarederror (RMSE) isusedtocomparedifferencesbetweenthepredictedvalue
yˆt andmeasuredvalueyt andiscomputedforT (which is thenumberofsamplesof theweekly load
profile)differentpredictionsas thesquarerootof themeanof thesquaresof thedeviations:
RMSE= √
∑Tt=1(yˆt−yt)2
T . (5)
Themeanabsoluteerror (MAE) isoneofanumberofwaysof comparing forecastswith their
eventualoutcomes.
MAE= 1
T T
∑
t=1 |yt− yˆt| . (6)
Themeanabsolutepercenterror (MAPE) isalsowidelyusedtoevaluateaccuracy.Accuracycan
becomparedviaMAPEusingpercentageswhenthescaleof the loads isdifferent [37–40].
MAPE= 100
T T
∑
t=1 ∣∣∣∣yt−
yˆtyt ∣∣∣∣ . (7)
5. LoadProfileAnalysisbyMulti-DecompositionMethods
5.1.WeeklySeasonality
This study used real-world load profile data from the R&D business building that utilized
enhancedAMIfordemandsidemanagement. Figure4showsthereal-worldloadprofileofthebusiness
building. Thebuildinggenerates288samplesperday,2016samplesperweek,and8640samplesper
month. The loadprofile ismeasuredandstored indatastorage.
72
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik