Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 72 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 72 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 72 -

Image of the Page - 72 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 72 -

Energies2018,11, 3433 4.3. LongShort-TermMemoryLayer TheLSTMcan capture long-termdependencies in time-stamps; therefore, it can address the vanishinggradientproblems. In theproposedmethod, thenumberofhiddenlayers increasesdueto thedecompositionof inputdata,but thevanishinggradientproblemissolvedthroughthememory cell structurewiththree-stepregularization. Inaddition, tominimizethecovariateshiftproblem,batch normalization isperformedprior to theactivationphaseof the input. IMFsandreference loadprofiles are trainedateachLSTMlayerandhavepredictivevalues, all ofwhicharesummedtopredict the loadprofile. 4.4.ModelConstruction 4.4.1.HyperparameterTuningandTrainingOptions TheLSTMmodelhas several hyperparameters suchas thenumberof inputneurons, hidden layers, inputwindowsize, numberof epochs, regularizationweight, batch size, and learning rate. Thewindow size of input and output parameters depends on the time scale of load forecasting. The inputneuronparameter isdeterminedbythedimensionsof the inputdata. The inputdimension of theproposedmethodis11,which is thesumof thereferenceprofileand10IMFsignals.Weselected thehyperparametersandusedADAMoptimization,oneof theoptimization techniquesused indeep learning[30–40]. 4.4.2. TrainingandTesting TheoverallAMIdatasetofeachdayisdividedintoaratioof70:15:15 for thepurposesofmodel training,validation,andtesting, respectively. 4.4.3. PerformanceMeasures Therootmeansquarederror (RMSE) isusedtocomparedifferencesbetweenthepredictedvalue yˆt andmeasuredvalueyt andiscomputedforT (which is thenumberofsamplesof theweekly load profile)differentpredictionsas thesquarerootof themeanof thesquaresof thedeviations: RMSE= √ ∑Tt=1(yˆt−yt)2 T . (5) Themeanabsoluteerror (MAE) isoneofanumberofwaysof comparing forecastswith their eventualoutcomes. MAE= 1 T T ∑ t=1 |yt− yˆt| . (6) Themeanabsolutepercenterror (MAPE) isalsowidelyusedtoevaluateaccuracy.Accuracycan becomparedviaMAPEusingpercentageswhenthescaleof the loads isdifferent [37–40]. MAPE= 100 T T ∑ t=1 ∣∣∣∣yt− yˆtyt ∣∣∣∣ . (7) 5. LoadProfileAnalysisbyMulti-DecompositionMethods 5.1.WeeklySeasonality This study used real-world load profile data from the R&D business building that utilized enhancedAMIfordemandsidemanagement. Figure4showsthereal-worldloadprofileofthebusiness building. Thebuildinggenerates288samplesperday,2016samplesperweek,and8640samplesper month. The loadprofile ismeasuredandstored indatastorage. 72
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies