Seite - 87 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 87 -
Text der Seite - 87 -
Energies2019,12, 57
Therefore, thepowermanagementcanbeadjustedbytuningSOClow andSOChigh. Asa last stage,
thehydrogenelectrolyzer transferredredundantenergytohydrogenstoragebasedonthe following
strategies (seeFigure3b) [33]:
(1) When the battery SOC was higher than 95%, the extra renewable energy was regarded
asredundant.
(2) Theelectrolyzermodulewouldwait for tenminutes toavoidchattering. If the total redundant
energy increasedduringthisperiod, theelectrolyzerwasswitchedon.
(3) When the hydrogen tankwas full or the battery SOCdropped to 85%, the electrolyzerwas
switchedoff.
Thus, the electrolyzerproducedhydrogenwhen thebatterySOCwasbetween85%and95%.
Theelectrolyzermodulewasset toproducehydrogenatarateof1.14L/minbyconsumingaconstant
powerof410W,basedontheexperimental results [33].
2.2. InputsEnergyandOutputLoads
Weappliedthehistorical irradiationandwindspeeddata [32],asshowninFigure4, to thePV
andWTmodules, respectively.AsshowninFigure4, solar radiationwasabundant in thesummer
but poor in thewinter; therefore, solar energy in the summer canbe stored for use in thewinter.
Conversely, thewind speedwas high in thewinter but low in the summer, sowind energywas
expectedtocompensate for the lackofsolarenergy in thewinter.However, thecompensationeffects
werenotas significantasoriginallydesignedbecause thewindwasnot sufficientlystrongandthe
energycostwasmuchhigher (seeTable2)whencomparedtootherenergysources.Note thatboth
solarandwindenergywereconcentrated in thedaytime, indicating that thisenergyshouldbestored
foruseatnight.
ȱ
(a)ȱ61Ȭdayȱradiationȱdata.ȱ (b)ȱAverageȱdailyȱradiation.ȱ
ȱ
(c)ȱ61Ȭdayȱwindȱspeedȱdata.ȱ (d)ȱAverageȱdailyȱwindȱspeed.ȱ
/RQJ 7LPH ,UUDGLDQFH (
WLPH GD\ 6XPPHU
:LQWHU 'DLO\ $YHUDJH ,UUDGLDQFH (
WLPH KU :LQWHU
6XPPHU
:LQG 6SHHG /RQJ 7LPH
WLPH GD\ 6XPPHU
:LQWHU :LQG 6SHHG 'DLO\ $YHUDJH
WLPH KU 6XPPHU
:LQWHU
Figure4.Radiationandwinddata.
87
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik