Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 87 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 87 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 87 -

Image of the Page - 87 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 87 -

Energies2019,12, 57 Therefore, thepowermanagementcanbeadjustedbytuningSOClow andSOChigh. Asa last stage, thehydrogenelectrolyzer transferredredundantenergytohydrogenstoragebasedonthe following strategies (seeFigure3b) [33]: (1) When the battery SOC was higher than 95%, the extra renewable energy was regarded asredundant. (2) Theelectrolyzermodulewouldwait for tenminutes toavoidchattering. If the total redundant energy increasedduringthisperiod, theelectrolyzerwasswitchedon. (3) When the hydrogen tankwas full or the battery SOCdropped to 85%, the electrolyzerwas switchedoff. Thus, the electrolyzerproducedhydrogenwhen thebatterySOCwasbetween85%and95%. Theelectrolyzermodulewasset toproducehydrogenatarateof1.14L/minbyconsumingaconstant powerof410W,basedontheexperimental results [33]. 2.2. InputsEnergyandOutputLoads Weappliedthehistorical irradiationandwindspeeddata [32],asshowninFigure4, to thePV andWTmodules, respectively.AsshowninFigure4, solar radiationwasabundant in thesummer but poor in thewinter; therefore, solar energy in the summer canbe stored for use in thewinter. Conversely, thewind speedwas high in thewinter but low in the summer, sowind energywas expectedtocompensate for the lackofsolarenergy in thewinter.However, thecompensationeffects werenotas significantasoriginallydesignedbecause thewindwasnot sufficientlystrongandthe energycostwasmuchhigher (seeTable2)whencomparedtootherenergysources.Note thatboth solarandwindenergywereconcentrated in thedaytime, indicating that thisenergyshouldbestored foruseatnight. ȱ (a)ȱ61Ȭdayȱradiationȱdata.ȱ (b)ȱAverageȱdailyȱradiation.ȱ ȱ (c)ȱ61Ȭdayȱwindȱspeedȱdata.ȱ (d)ȱAverageȱdailyȱwindȱspeed.ȱ /RQJ 7LPH ,UUDGLDQFH ( WLPH GD\ 6XPPHU :LQWHU 'DLO\ $YHUDJH ,UUDGLDQFH ( WLPH KU :LQWHU 6XPPHU :LQG 6SHHG /RQJ 7LPH WLPH GD\ 6XPPHU :LQWHU :LQG 6SHHG 'DLO\ $YHUDJH WLPH KU 6XPPHU :LQWHU Figure4.Radiationandwinddata. 87
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies