Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 89 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 89 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 89 -

Bild der Seite - 89 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 89 -

Energies2019,12, 57 Wecalculatedthe initial costs Jki(b, s,w) andtheoperationcosts J l o(b, s,w) as follows: Jki(b, s,w) =Ck·nk·CRFk (5) Jlo(b, s,w) =Cl·nl (6) inwhichCandnare thepriceperunit and the installedunits, respectively, for eachcomponent k. CRF representedthecapital recoveryfactor thatwasdefinedas [32,33,39]: CRF= ir(1+ ir)ny (1+ ir)ny−1 (7) where ir is the inflationrate,whichwassetas1.26%inthispaperbyreferringto theaverageannual changeofconsumerpriceindexofTaiwan[39],andny is theexpectedlifeof thecomponents. Theprice andexpected lifeof thecomponentsare illustrated inTable4wereusedtocalculate thesystemcosts in the followingexamples. Table4.Component lifeandprice [32,33,39]. Component Life (year) Price ($) Hybridsystem 15 N/A Windturbine (3kW) 15 9666 PVarrays (1kW) 15 1833 Powerelectronicdevices (6kW) 15 1666 ChemicalH2generation 15 10,666 NaBH4 (60g) N/A 0.33 Electrolyzer (2.5kW–500L/h) N/A 10,666 PEMFC(3kW) N/A 6000 Battery (48V–100Ah) N/A 866 (2) Systemreliability: thereliabilityof thehybridsystemwasdefinedas the lossofpowersupply (LPSP)as follows[32,33,39]: LPSP= ∫ LPS(t)dt∫ P(t)dt (8) inwhichLPS(t)was theshortage (lost)ofpowersupplyat time t,whileP(t)was thepowerdemandof the loadprofileat time t. Therefore, ∫ LPS(t)dt indicatedthe insufficientenergysupplyand ∫ P(t)dt represented the total energydemand for the entire simulation. If the power supplymet the load demandatall times, (i.e.,LPS(t)=0,∀t), thenthesystemwascompletelyreliablewithLPSP=0. (3) Systemsafety: systemsafetywasdefinedas theguaranteed sustainableperiodof thehybrid powersystemunderextremeweatherconditionswhennosolarorwindenergywasavailable. Suppose theenergystored in thesystemwasEstoreandtheaveragedailyenergyconsumption wasEday; then, thesystemsafetycanbedefinedas follows: Safety= Estore Eday (9) For example, averagedaily energydemand is 19.96, 30.41, and22.32kWh for thehousehold, laboratory, and office, respectively (see Table 3). Therefore, if the energy stored in the battery and hydrogen is 60 kWh, the system safety is 3.01, 1.97, and 2.69 days for the laboratory, office, andhousehold, respectively.Whenconsideringtheefficiencyof thebatteryandinverterbothas90%, thenthesystemsafety is2.70,1.78,and2.42days, respectively. 89
zurück zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies