Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 89 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 89 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 89 -

Image of the Page - 89 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 89 -

Energies2019,12, 57 Wecalculatedthe initial costs Jki(b, s,w) andtheoperationcosts J l o(b, s,w) as follows: Jki(b, s,w) =Ck·nk·CRFk (5) Jlo(b, s,w) =Cl·nl (6) inwhichCandnare thepriceperunit and the installedunits, respectively, for eachcomponent k. CRF representedthecapital recoveryfactor thatwasdefinedas [32,33,39]: CRF= ir(1+ ir)ny (1+ ir)ny−1 (7) where ir is the inflationrate,whichwassetas1.26%inthispaperbyreferringto theaverageannual changeofconsumerpriceindexofTaiwan[39],andny is theexpectedlifeof thecomponents. Theprice andexpected lifeof thecomponentsare illustrated inTable4wereusedtocalculate thesystemcosts in the followingexamples. Table4.Component lifeandprice [32,33,39]. Component Life (year) Price ($) Hybridsystem 15 N/A Windturbine (3kW) 15 9666 PVarrays (1kW) 15 1833 Powerelectronicdevices (6kW) 15 1666 ChemicalH2generation 15 10,666 NaBH4 (60g) N/A 0.33 Electrolyzer (2.5kW–500L/h) N/A 10,666 PEMFC(3kW) N/A 6000 Battery (48V–100Ah) N/A 866 (2) Systemreliability: thereliabilityof thehybridsystemwasdefinedas the lossofpowersupply (LPSP)as follows[32,33,39]: LPSP= ∫ LPS(t)dt∫ P(t)dt (8) inwhichLPS(t)was theshortage (lost)ofpowersupplyat time t,whileP(t)was thepowerdemandof the loadprofileat time t. Therefore, ∫ LPS(t)dt indicatedthe insufficientenergysupplyand ∫ P(t)dt represented the total energydemand for the entire simulation. If the power supplymet the load demandatall times, (i.e.,LPS(t)=0,∀t), thenthesystemwascompletelyreliablewithLPSP=0. (3) Systemsafety: systemsafetywasdefinedas theguaranteed sustainableperiodof thehybrid powersystemunderextremeweatherconditionswhennosolarorwindenergywasavailable. Suppose theenergystored in thesystemwasEstoreandtheaveragedailyenergyconsumption wasEday; then, thesystemsafetycanbedefinedas follows: Safety= Estore Eday (9) For example, averagedaily energydemand is 19.96, 30.41, and22.32kWh for thehousehold, laboratory, and office, respectively (see Table 3). Therefore, if the energy stored in the battery and hydrogen is 60 kWh, the system safety is 3.01, 1.97, and 2.69 days for the laboratory, office, andhousehold, respectively.Whenconsideringtheefficiencyof thebatteryandinverterbothas90%, thenthesystemsafety is2.70,1.78,and2.42days, respectively. 89
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies