Seite - 92 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 92 -
Text der Seite - 92 -
Energies2019,12, 57
systemreliabilitywasbetter thanthehouseandthelaboratoryloadsat thisstep,becausetheofficeload
profilewasbasicallysynchronizedwith the irradiationandwindcurvesandthesolarenergycouldbe
useddirectly tosupply the loads. Therefore,weomittedStep3 that representedtheoptimizationwith
w=2andLPSP=0inTables5and6.
ȱ
(a)ȱwȱ=ȱ2ȱandȱ(SOClow,ȱSOChigh)ȱ=ȱ(40%,ȱ50%)ȱ (b)ȱwȱ=ȱ0ȱandȱ(SOClow,ȱSOChigh)ȱ=ȱ(30%,ȱ40%)ȱ
Figure8.Thereferenceplots for theoffice load.
Table7.Theoptimaldesignprocedures for theoffice load.
(b,s,w) (SOClow,SOChigh) LPSP (%) J ($/kWh)
Step1 (8,10,2) (40%,50%) 5.08% 1.107
Step2 (23,11,2) (40%,50%) 0% 1.106
Step3 - - - -
Step4 (29,17,0) (40%,50%) 0% 0.818
Step5 (29,17,0) (30%,40%) 0% 0.817
Step6 (26,17,0) (30%,40%) 0% 0.791
Step7 (26,17,0) (30%,40%) 0% 0.791
Optimal (26,17,0) (30%,40%) 0% 0.791
Settingw=0gaveasignificantcost reductionto J=0.818$/kWhwithLPSP=0bysetting(b, s,w)
= (29, 17, 0) (seeStep4ofTable7). The iterativeprocedures then further improvedthesystemcost
to J=0.817$/kWhwithLPSP=0byadjustingthepowermanagementas (SOClow,SOChigh)= (30%,
40%),andthecostfinallyconvergedto J=0.791$/kWhwithLPSP=0bysetting(b, s,w)= (26,17,0)
and(SOClow,SOChigh)= (30%,40%).Whencomparedwith theoriginalcost, thecostwasreducedby
28.6%whilemaintainingcompletesystemreliability.
3.4. Cost andEnergyDistributions
Theoptimal systemdesigns for the three loads,basedonthereferenceplots, are illustrated in
Tables5–7.Wefurtheranalyzedthecostandenergydistributionsof thesesystems,asshowninTable8.
First, thelaboratoryachievedthelowestunitenergycostbecauseitsaveragedailyenergyconsumption
was the largest; therefore, the initial costswereshared. Thehousehold loadshowedanopposite result.
Second, thelaboratoryusedthemostsolarpanelsandbatteries,whilethehouseholdappliedthefewest
solarpanels andbatteries, toproduceandstore sufficient energy for the loadrequirements. Third,
theoptimalbatteryunits forall loadsdidnotdiffermuch(23–27units); thiswasnot intuitivebecause
the laboratory loadwasmainlyatnight,while theoffice loadwasmainly indaytime. Thereasonfor
thiswas that thebattery lifewas shortened if onlya small amountof thebatteryenergywasused.
Therefore, using a large amount of the battery energy increased the initial cost but it also helped
toextend thebattery life, thereby reducing thebattery costs. For instance, for the laboratory load,
thebatterycostwas the lowesteven thoughthe laboratory loadusedthe largestamountofbattery
energy. Because the initial batterySOCwasset as80%in the simulationmodel, anegativeenergy
supplydistributionofbatterymeans thebatterySOCishigher than80%at theendof thesimulation,
92
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik