Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 114 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 114 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 114 -

Bild der Seite - 114 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 114 -

Energies2018,11, 3442 Theforecastedvalueforthecompoundcurvefittingmodel for2030is2,741,903.862MWisplotted inFigure12. Ϭ ϱϬϬ͕ϬϬϬ ϭ͕ϬϬϬ͕ϬϬϬ ϭ͕ϱϬϬ͕ϬϬϬ Ϯ͕ϬϬϬ͕ϬϬϬ Ϯ͕ϱϬϬ͕ϬϬϬ ϯ͕ϬϬϬ͕ϬϬϬ ϯ͕ϱϬϬ͕ϬϬϬ dŽƚĂů ůĞĐƚƌŝĐŝƚLJ ŽŶƐƵŵĞĚ &ŽƌĞĐĂƐƚ džƉŽŶĞŶƚŝĂů Figure12.Chart forExponentialmethod(1971–2030). Similarly theregressionequations forseveralothermodelsshallalsobe interpreted. 4.Discussion Themeasureoftheadequacyofthefit isdeterminedbythesamplecorrelation(r)betweenthetrue valueandresponsesgotoutof thefit. Thesamplecorrelation’s square isworkedout readilyoutof the statisticalpackage in theANOVAandis termedthecoefficientofdetermination(R2). Thecoefficient ofdetermination iscomputeddirectlybyestimatingPearson’scorrelation ‘r’betweenthepredicted andtheactualdata. Thecoefficientsofdeterminationaregenerallyexpressed in termsofpercentage. ThevalueofR2 lies inbetween0%and100%.Thenearer thevalue to theupperbound; thehealthier willbe thefit [35]. LEAPandHolt’sexponential smoothingmethodwerealsoemployedtoestimate theelectricity energydemandfor2030 inMaharashtra, India in thatstudy.ANN,multipleregressionapproaches andANOVAwereused. It isevident fromtheanalysisofvariance in thisarticle that theregression methodisable to forecast thecuttingforceswithahigheraccuracy[36]whichsupports thepresent study. Anoptimal renewable energymodel,OREMfor Indiawas evolved for theyear 2020–2021 tomeet the increasingenergyrequirements [37]. Anoptimizationmodel forvariousend-useswas formulatedbydeterminingtheoptimumallocationof renewableenergyfor2020–2021,byconsidering the energy requirement of the commercial sector. This study revealed that the social acceptance of bio resources increased by 3% and solar PV utilizationdecreased by 65% [38].Various energy demandforecastingmodelswerereviewedby[39]andfoundthat traditionalmethodsviz., timeseries regression,econometricanalysisareextensivelymadeuse fordemandsidemanagementwhereas the TECiscalculatedfor2030 in thispaper. Regressionanalysis, linearmodelanalysisandR2 correlation valuewasbuiltby [40] foracurvedvanedemisterwhichsupports theusing linearmodelanalysis of thecurrentstudy. Theutilizationofblackboxapproachto forecast theTECfor India issupported byvast literature amongwhich an optimal renewable energymodel for India for 2020–2021was presentedbydistributingrenewableenergyeffectively tohelp thepolicy framers inmarketing the renewableenergyresourcesandtodeterminetheoptimizedallotmentofvariousnon-conventional energy resources forvarious end-uses. In this study linear aswell asmultiple regressionanalysis provesGDPisagain thebetterpredictor in termsofMultiple linearregression. Therefore,asensible 114
zurück zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies