Page - 114 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 114 -
Text of the Page - 114 -
Energies2018,11, 3442
Theforecastedvalueforthecompoundcurvefittingmodel for2030is2,741,903.862MWisplotted
inFigure12.
Ϭ
ϱϬϬ͕ϬϬϬ
ϭ͕ϬϬϬ͕ϬϬϬ
ϭ͕ϱϬϬ͕ϬϬϬ
Ϯ͕ϬϬϬ͕ϬϬϬ
Ϯ͕ϱϬϬ͕ϬϬϬ
ϯ͕ϬϬϬ͕ϬϬϬ
ϯ͕ϱϬϬ͕ϬϬϬ
dŽƚĂů ůĞĐƚƌŝĐŝƚLJ ŽŶƐƵŵĞĚ &ŽƌĞĐĂƐƚ džƉŽŶĞŶƚŝĂů
Figure12.Chart forExponentialmethod(1971–2030).
Similarly theregressionequations forseveralothermodelsshallalsobe interpreted.
4.Discussion
Themeasureoftheadequacyofthefit isdeterminedbythesamplecorrelation(r)betweenthetrue
valueandresponsesgotoutof thefit. Thesamplecorrelation’s square isworkedout readilyoutof the
statisticalpackage in theANOVAandis termedthecoefficientofdetermination(R2). Thecoefficient
ofdetermination iscomputeddirectlybyestimatingPearson’scorrelation ‘r’betweenthepredicted
andtheactualdata. Thecoefficientsofdeterminationaregenerallyexpressed in termsofpercentage.
ThevalueofR2 lies inbetween0%and100%.Thenearer thevalue to theupperbound; thehealthier
willbe thefit [35].
LEAPandHolt’sexponential smoothingmethodwerealsoemployedtoestimate theelectricity
energydemandfor2030 inMaharashtra, India in thatstudy.ANN,multipleregressionapproaches
andANOVAwereused. It isevident fromtheanalysisofvariance in thisarticle that theregression
methodisable to forecast thecuttingforceswithahigheraccuracy[36]whichsupports thepresent
study. Anoptimal renewable energymodel,OREMfor Indiawas evolved for theyear 2020–2021
tomeet the increasingenergyrequirements [37]. Anoptimizationmodel forvariousend-useswas
formulatedbydeterminingtheoptimumallocationof renewableenergyfor2020–2021,byconsidering
the energy requirement of the commercial sector. This study revealed that the social acceptance
of bio resources increased by 3% and solar PV utilizationdecreased by 65% [38].Various energy
demandforecastingmodelswerereviewedby[39]andfoundthat traditionalmethodsviz., timeseries
regression,econometricanalysisareextensivelymadeuse fordemandsidemanagementwhereas the
TECiscalculatedfor2030 in thispaper. Regressionanalysis, linearmodelanalysisandR2 correlation
valuewasbuiltby [40] foracurvedvanedemisterwhichsupports theusing linearmodelanalysis
of thecurrentstudy. Theutilizationofblackboxapproachto forecast theTECfor India issupported
byvast literature amongwhich an optimal renewable energymodel for India for 2020–2021was
presentedbydistributingrenewableenergyeffectively tohelp thepolicy framers inmarketing the
renewableenergyresourcesandtodeterminetheoptimizedallotmentofvariousnon-conventional
energy resources forvarious end-uses. In this study linear aswell asmultiple regressionanalysis
provesGDPisagain thebetterpredictor in termsofMultiple linearregression. Therefore,asensible
114
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik