Seite - 122 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 122 -
Text der Seite - 122 -
Energies2018,11, 3283
adesigner’sexpertiseandexhibits lowversatility [18].Ontheotherhand, thispaperproposesdata
post-processingtechniquecombinedapproaches toconstructahybridforecastingmodelbycombining
randomforestandmultilayerperceptron(MLP).
3.HybridShort-TermLoadForecasting
In this section,wedescribeourhybridelectrical load forecastingmodel. Theoverall steps for
constructingthe forecastingmodelareshowninFigure1. First,wecollectdailypowerconsumption
data, timeseries information,andweather information,whichwillbeusedas independentvariables
forourhybridSTLFmodel.Aftersomepreprocessing,webuildahybridpredictionmodelbasedon
randomforestandMLP.Lastly,weperformaseven-step-ahead(oneweekor145hahead) timeseries
cross-validationfor theelectrical loaddata.
Figure1.Ourframeworkforhybriddailyelectrical loadforecasting.
3.1.Dataset
TobuildaneffectiveSTLFmodel forbuildingsorbuildingclusters, it is crucial tocollect their
realpowerconsumptiondata thatshowthepowerusageof thebuildings in therealworld. For this
purpose,we considered three clusters of buildingswithvariedpurposes andcollected their daily
powerconsumptiondata fromauniversity inKorea. Thefirst cluster iscomposedof32buildingswith
academicpurposes, suchas themainbuilding,amenities,departmentbuildings, central library,etc.
Thesecondcluster is composedof20buildings,withscienceandengineeringpurposes.Comparedto
otherclusters, thisclustershowedamuchhigherelectrical load,mainlyduetothediverseexperimental
equipmentanddevicesusedin the laboratories. The thirdclustercomprised16dormitorybuildings,
whosepowerconsumptionwasbasedontheresidencepattern. Inaddition,wegatheredotherdata,
includingtheacademicschedule,weather,andeventcalendar. Theuniversityemploys the i-Smart
systemtomonitor theelectrical loadinreal time. This isanenergyportalserviceoperatedbytheKorea
ElectricPowerCorporation(KEPCO)togiveconsumerselectricity-relateddatasuchaselectricityusage
andexpectedbill tomakethemuseelectricityefficiently. Throughthis i-Smartsystem,wecollected
thedailypowerconsumptionofsixyears, from2012 to2017. Forweather information,weutilizedthe
regional synopticmeteorologicaldataprovidedbytheKoreaMeteorologicalOffice (KMA).KMA’s
mid-term forecast provides information including thedate,weather, temperature (maximumand
minimum),andits reliability formore thansevendays.
TobuildourhybridSTLFmodel,weconsideredninevariables;month,dayof themonth,day
of theweek, holiday, academic year, temperature,week-ahead load, year-ahead load, andLSTM
Networks. In particular, the day of theweek is a categorized variable andwepresent the seven
daysusing integers1 to7accordingto theISO-8601standard[32].Accordingly,1 indicatesMonday
and7indicatesSunday.Holiday,which includesSaturdays,Sundays,nationalholidays,andschool
anniversary[33], indicateswhether thecampus isclosedornot.Adetaileddescriptionof the input
variablescanbefoundin[12].
122
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik