Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 122 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 122 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 122 -

Image of the Page - 122 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 122 -

Energies2018,11, 3283 adesigner’sexpertiseandexhibits lowversatility [18].Ontheotherhand, thispaperproposesdata post-processingtechniquecombinedapproaches toconstructahybridforecastingmodelbycombining randomforestandmultilayerperceptron(MLP). 3.HybridShort-TermLoadForecasting In this section,wedescribeourhybridelectrical load forecastingmodel. Theoverall steps for constructingthe forecastingmodelareshowninFigure1. First,wecollectdailypowerconsumption data, timeseries information,andweather information,whichwillbeusedas independentvariables forourhybridSTLFmodel.Aftersomepreprocessing,webuildahybridpredictionmodelbasedon randomforestandMLP.Lastly,weperformaseven-step-ahead(oneweekor145hahead) timeseries cross-validationfor theelectrical loaddata. Figure1.Ourframeworkforhybriddailyelectrical loadforecasting. 3.1.Dataset TobuildaneffectiveSTLFmodel forbuildingsorbuildingclusters, it is crucial tocollect their realpowerconsumptiondata thatshowthepowerusageof thebuildings in therealworld. For this purpose,we considered three clusters of buildingswithvariedpurposes andcollected their daily powerconsumptiondata fromauniversity inKorea. Thefirst cluster iscomposedof32buildingswith academicpurposes, suchas themainbuilding,amenities,departmentbuildings, central library,etc. Thesecondcluster is composedof20buildings,withscienceandengineeringpurposes.Comparedto otherclusters, thisclustershowedamuchhigherelectrical load,mainlyduetothediverseexperimental equipmentanddevicesusedin the laboratories. The thirdclustercomprised16dormitorybuildings, whosepowerconsumptionwasbasedontheresidencepattern. Inaddition,wegatheredotherdata, includingtheacademicschedule,weather,andeventcalendar. Theuniversityemploys the i-Smart systemtomonitor theelectrical loadinreal time. This isanenergyportalserviceoperatedbytheKorea ElectricPowerCorporation(KEPCO)togiveconsumerselectricity-relateddatasuchaselectricityusage andexpectedbill tomakethemuseelectricityefficiently. Throughthis i-Smartsystem,wecollected thedailypowerconsumptionofsixyears, from2012 to2017. Forweather information,weutilizedthe regional synopticmeteorologicaldataprovidedbytheKoreaMeteorologicalOffice (KMA).KMA’s mid-term forecast provides information including thedate,weather, temperature (maximumand minimum),andits reliability formore thansevendays. TobuildourhybridSTLFmodel,weconsideredninevariables;month,dayof themonth,day of theweek, holiday, academic year, temperature,week-ahead load, year-ahead load, andLSTM Networks. In particular, the day of theweek is a categorized variable andwepresent the seven daysusing integers1 to7accordingto theISO-8601standard[32].Accordingly,1 indicatesMonday and7indicatesSunday.Holiday,which includesSaturdays,Sundays,nationalholidays,andschool anniversary[33], indicateswhether thecampus isclosedornot.Adetaileddescriptionof the input variablescanbefoundin[12]. 122
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies