Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 132 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 132 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 132 -

Bild der Seite - 132 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 132 -

Energies2018,11, 3283 (c) Cluster C Figure6.Feature importance inrandomforest. Table7shows theelectrical load forecastaccuracy for thepatternclassificationof similar time seriesfor2016. Inthetable, thepredictedresultswithabetteraccuracyaremarkedinbold. Forinstance, in thecaseofClusterA,while randomforest showsabetterpredictionaccuracy forpatterns1 to4, MLPshowsabetter accuracy forpatterns 5 to 8. Using this table,we can choose amore accurate predictionmodel for thepatternandcluster type. Table7.MAPEresultsof loadforecasting in2016. 2016 ClusterA ClusterB ClusterC Pattern MLP RF MLP RF MLP RF 1 3.339 3.092 3.705 2.901 2.736 2.475 2 2.199 1.965 4.395 3.602 2.987 2.731 3 2.840 2.712 3.343 2.990 2.853 2.277 4 4.165 3.472 3.794 3.978 3.517 2.568 5 7.624 9.259 8.606 15.728 4.229 10.303 6 4.617 5.272 5.404 6.172 5.159 4.894 7 3.816 4.548 9.199 8.860 3.686 4.718 8 6.108 6.402 5.844 6.768 2.152 2.595 Table8showspredictionresultsofourmodel for2017. ComparingTables7and8,wecansee thatMLPand random forest (RF) have amatched relative performance inmost cases. There are twoexceptions inClusterAandoneexception inClusterBandtheyareunderlinedandmarkedin bold. In thecaseofClusterC,MLPandRFgave thesamerelativeperformance. This isgoodevidence thatourhybridmodelcanbegeneralized. Table8.MAPEresultsof loadforecasting in2017. 2017 ClusterA ClusterB ClusterC Pattern MLP RF MLP RF MLP RF 1 2.914 2.709 4.009 3.428 2.838 2.524 2 1.945 2.587 3.313 3.442 2.622 2.474 3 2.682 2.629 3.464 3.258 3.350 2.583 4 5.025 4.211 4.005 5.116 2.694 2.391 5 7.103 11.585 9.640 20.718 3.300 15.713 6 4.503 6.007 5.956 7.272 6.984 6.296 7 3.451 3.517 13.958 12.386 3.835 4.443 8 6.834 6.622 7.131 8.106 2.562 3.722 132
zurück zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies