Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 132 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 132 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 132 -

Image of the Page - 132 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 132 -

Energies2018,11, 3283 (c) Cluster C Figure6.Feature importance inrandomforest. Table7shows theelectrical load forecastaccuracy for thepatternclassificationof similar time seriesfor2016. Inthetable, thepredictedresultswithabetteraccuracyaremarkedinbold. Forinstance, in thecaseofClusterA,while randomforest showsabetterpredictionaccuracy forpatterns1 to4, MLPshowsabetter accuracy forpatterns 5 to 8. Using this table,we can choose amore accurate predictionmodel for thepatternandcluster type. Table7.MAPEresultsof loadforecasting in2016. 2016 ClusterA ClusterB ClusterC Pattern MLP RF MLP RF MLP RF 1 3.339 3.092 3.705 2.901 2.736 2.475 2 2.199 1.965 4.395 3.602 2.987 2.731 3 2.840 2.712 3.343 2.990 2.853 2.277 4 4.165 3.472 3.794 3.978 3.517 2.568 5 7.624 9.259 8.606 15.728 4.229 10.303 6 4.617 5.272 5.404 6.172 5.159 4.894 7 3.816 4.548 9.199 8.860 3.686 4.718 8 6.108 6.402 5.844 6.768 2.152 2.595 Table8showspredictionresultsofourmodel for2017. ComparingTables7and8,wecansee thatMLPand random forest (RF) have amatched relative performance inmost cases. There are twoexceptions inClusterAandoneexception inClusterBandtheyareunderlinedandmarkedin bold. In thecaseofClusterC,MLPandRFgave thesamerelativeperformance. This isgoodevidence thatourhybridmodelcanbegeneralized. Table8.MAPEresultsof loadforecasting in2017. 2017 ClusterA ClusterB ClusterC Pattern MLP RF MLP RF MLP RF 1 2.914 2.709 4.009 3.428 2.838 2.524 2 1.945 2.587 3.313 3.442 2.622 2.474 3 2.682 2.629 3.464 3.258 3.350 2.583 4 5.025 4.211 4.005 5.116 2.694 2.391 5 7.103 11.585 9.640 20.718 3.300 15.713 6 4.503 6.007 5.956 7.272 6.984 6.296 7 3.451 3.517 13.958 12.386 3.835 4.443 8 6.834 6.622 7.131 8.106 2.562 3.722 132
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies