Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 139 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 139 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 139 -

Bild der Seite - 139 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 139 -

energies Article EmpiricalComparisonofNeuralNetworkand Auto-RegressiveModels inShort-Term LoadForecasting MiguelLópez*,CarlosSans,SergioValeroandCarolinaSenabre DepartmentofMechanicEngineeringandEnergy,UniversidadMiguelHernández,03202Elx,Alacant,Spain; carsantr@gmail.com(C.S.); svalero@umh.es (S.V.); csenabre@umh.es (C.S.) * Correspondence:m.lopezg@umh.es;Tel.:+34-965-22-2407 Received: 26 June2018;Accepted: 1August2018;Published: 10August2018 Abstract:Artificial Intelligence (AI)hasbeenwidelyused inShort-TermLoadForecasting (STLF) in the last20yearsandithaspartlydisplacedolder time-seriesandstatisticalmethods toasecond row. However, theSTLFproblemisveryparticularandspecific toeachcaseand,while thereare manypapersaboutAIapplications, there is little researchdeterminingwhichfeaturesofanSTLF systemisbetter suitedforaspecificdataset. Inmanyoccasionsbothclassicalandmodernmethods coexist,providingcombinedforecasts thatoutperformthe individualones. Thispaperpresentsa thoroughempirical comparisonbetweenNeuralNetworks (NN)andAutoregressive (AR)modelsas forecastingengines. Theobjectiveof thispaper is todetermine thecircumstancesunderwhicheach model showsabetterperformance. It analyzesoneof themodels currently inuseat theNational TransportSystemOperator inSpain,RedEléctricadeEspaña(REE),whichcombinesbothtechniques. Theparameters that are tested are the availability of historical data, the treatment of exogenous variables, the trainingfrequencyandtheconfigurationof themodel. Theperformanceofeachmodel ismeasuredasRMSEoveraone-yearperiodandanalyzedunderseveral factors likespecialdays orextremetemperatures. TheARmodelhas0.13%lowererror thantheNNunder idealconditions. However, theNNmodelperformsmoreaccuratelyundercertainstresssituations. Keywords: short-termloadforecasting(STLF);neuralnetworks;artificial intelligence (AI) 1. Introduction ThedevelopmentofShort-TermLoadForecasting(STLF) toolshasbeenacommontopic in the lateyears [1–3]. STLFisdefinedas forecastingfrom1htoseveraldaysahead,andit isusuallydone hourlyorhalf-hourly. TheapplicationofSTLFincludetransportandsystemoperators thatneedto ensurereliabilityandefficiencyof thesystemandnetworksandproducers that require toestablish schedulesandutilizationof theirpower facilities. Inaddition,STLFis requiredfor theoptimizationof marketbiddingforbothbuyersandsellers inthemarket. Theabilitytoforeseetheelectricdemandwill reduce thecostsofdeviations fromthecommittedoffers. Theseaspectshavebeenespeciallyrelevant in the last decade inwhich thederegulationof theSpanishmarket followingEuropeandirectives hasbeenenforced. Inaddition, the increasingavailabilityof renewableenergysources,makes the balancingof thesystemmoreunstableas itaddsmoreuncertaintyontheproducingend.Allof these reasonsmakeSTLFacriticalaspect toensurereliabilityandefficiencyof thepowersystem. Forecastingmodelsuseseveral techniques thatcanbegroupedinStatistical,Artificial Intelligence andHybridtechniques. Statisticalmethodsrequireamathematicalmodel thatprovidetherelationship between load and other input factors. These methods were the first ones used and are still currently relevant. They includemultiple linear regressionmodels [4–6], time-series [7–10] and exponential smoothing techniques [11]. Pattern recognition is a key aspect of load forecasting. Energies2018,11, 2080;doi:10.3390/en11082080 www.mdpi.com/journal/energies139
zurück zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies