Page - 139 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 139 -
Text of the Page - 139 -
energies
Article
EmpiricalComparisonofNeuralNetworkand
Auto-RegressiveModels inShort-Term
LoadForecasting
MiguelLópez*,CarlosSans,SergioValeroandCarolinaSenabre
DepartmentofMechanicEngineeringandEnergy,UniversidadMiguelHernández,03202Elx,Alacant,Spain;
carsantr@gmail.com(C.S.); svalero@umh.es (S.V.); csenabre@umh.es (C.S.)
* Correspondence:m.lopezg@umh.es;Tel.:+34-965-22-2407
Received: 26 June2018;Accepted: 1August2018;Published: 10August2018
Abstract:Artificial Intelligence (AI)hasbeenwidelyused inShort-TermLoadForecasting (STLF)
in the last20yearsandithaspartlydisplacedolder time-seriesandstatisticalmethods toasecond
row. However, theSTLFproblemisveryparticularandspecific toeachcaseand,while thereare
manypapersaboutAIapplications, there is little researchdeterminingwhichfeaturesofanSTLF
systemisbetter suitedforaspecificdataset. Inmanyoccasionsbothclassicalandmodernmethods
coexist,providingcombinedforecasts thatoutperformthe individualones. Thispaperpresentsa
thoroughempirical comparisonbetweenNeuralNetworks (NN)andAutoregressive (AR)modelsas
forecastingengines. Theobjectiveof thispaper is todetermine thecircumstancesunderwhicheach
model showsabetterperformance. It analyzesoneof themodels currently inuseat theNational
TransportSystemOperator inSpain,RedEléctricadeEspaña(REE),whichcombinesbothtechniques.
Theparameters that are tested are the availability of historical data, the treatment of exogenous
variables, the trainingfrequencyandtheconfigurationof themodel. Theperformanceofeachmodel
ismeasuredasRMSEoveraone-yearperiodandanalyzedunderseveral factors likespecialdays
orextremetemperatures. TheARmodelhas0.13%lowererror thantheNNunder idealconditions.
However, theNNmodelperformsmoreaccuratelyundercertainstresssituations.
Keywords: short-termloadforecasting(STLF);neuralnetworks;artificial intelligence (AI)
1. Introduction
ThedevelopmentofShort-TermLoadForecasting(STLF) toolshasbeenacommontopic in the
lateyears [1–3]. STLFisdefinedas forecastingfrom1htoseveraldaysahead,andit isusuallydone
hourlyorhalf-hourly. TheapplicationofSTLFincludetransportandsystemoperators thatneedto
ensurereliabilityandefficiencyof thesystemandnetworksandproducers that require toestablish
schedulesandutilizationof theirpower facilities. Inaddition,STLFis requiredfor theoptimizationof
marketbiddingforbothbuyersandsellers inthemarket. Theabilitytoforeseetheelectricdemandwill
reduce thecostsofdeviations fromthecommittedoffers. Theseaspectshavebeenespeciallyrelevant
in the last decade inwhich thederegulationof theSpanishmarket followingEuropeandirectives
hasbeenenforced. Inaddition, the increasingavailabilityof renewableenergysources,makes the
balancingof thesystemmoreunstableas itaddsmoreuncertaintyontheproducingend.Allof these
reasonsmakeSTLFacriticalaspect toensurereliabilityandefficiencyof thepowersystem.
Forecastingmodelsuseseveral techniques thatcanbegroupedinStatistical,Artificial Intelligence
andHybridtechniques. Statisticalmethodsrequireamathematicalmodel thatprovidetherelationship
between load and other input factors. These methods were the first ones used and are still
currently relevant. They includemultiple linear regressionmodels [4–6], time-series [7–10] and
exponential smoothing techniques [11]. Pattern recognition is a key aspect of load forecasting.
Energies2018,11, 2080;doi:10.3390/en11082080 www.mdpi.com/journal/energies139
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik