Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Seite - 151 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 151 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Bild der Seite - 151 -

Bild der Seite - 151 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text der Seite - 151 -

Energies2018,11, 2080 howtheNNismuch lessdependenton the chosen thresholdwhile theARperformance is clearly thrownoffbyamisadjustedthreshold. Table4.Forecastingerror (RMSE)withdifferentHDDthresholdadjustment inBarcelona. TypeofDayand Model HDDThreshold 13 14 15 16 17 18 19 20 21 22 23 24 25 Overall AR 2.00% 1.98% 1.96% 1.95% 1.94% 1.92% 1.91% 1.91% 1.91% 1.91% 1.92% 1.93% 1.94% NN 1.92% 1.93% 1.93% 1.93% 1.94% 1.92% 1.92% 1.93% 1.92% 1.92% 1.93% 1.93% 1.94% Hot AR 2.62% 2.63% 2.63% 2.62% 2.60% 2.58% 2.55% 2.53% 2.50% 2.48% 2.46% 2.43% 2.45% NN 2.54% 2.55% 2.55% 2.53% 2.56% 2.54% 2.55% 2.54% 2.52% 2.51% 2.51% 2.46% 2.47% Cold AR 2.16% 2.11% 2.07% 2.03% 2.00% 1.99% 1.99% 1.99% 1.99% 2.00% 2.01% 2.02% 2.02% NN 1.65% 1.67% 1.69% 1.71% 1.71% 1.68% 1.71% 1.68% 1.72% 1.67% 1.71% 1.69% 1.69% 1.70% 1.73% 1.76% 1.79% 1.82% 1.85% 1.88% 1.91% 1.88% 1.90% 1.92% 1.94% 1.96% 1.98% 2.00% 2.02% 13 14 15 16 17 18 19 20 21 22 23 24 25 HDD Threshold (ºC) Overall Accuracy vs HDD threshold offset BAR - AR BAR - NN ZAR - AR ZAR - NN Figure10.Overall forecastingerror (RMSE)withdifferentHDDthresholdadjustment inBarcelona andZaragoza. 4.4.NumberofNeurons Thenumberof neurons in thehidden layer affects both computational burdenand theNN’s performance. Therefore,bothaspectsarereportedasresultsonthis test. Table5showstheaccuracy of theneuralnetworkas thenumberofneurons is increased. Inaddition, the forecasting timefora single24-hprofile is included. It isworthnoticing that therestof forecastingprocesses likedataaccess or treatmentalsoconsumetimeand, therefore, thereportedtimeisnot theonlyconcern inorder to obtaina timely forecast. Table5.Forecastingerror (RMSE)andexecutiontimewithdifferentnumberofneurons. TypeofDay NumberofNeurons 3 4 5 10 15 20 Overall 1.56% 1.55% 1.56% 1.55% 1.58% 1.62% Regular 1.49% 1.46% 1.45% 1.44% 1.46% 1.50% Special 2.00% 2.10% 2.28% 2.31% 2.36% 2.46% Hot 2.00% 1.93% 1.95% 1.93% 2.00% 2.04% Cold 1.55% 1.45% 1.51% 1.48% 1.51% 1.58% Time(s) 1.610 1.615 1.620 1.630 1.639 1.643 Testconditions: 7YT,10RN,5TL,12MF,7/14LAG. 151
zurück zum  Buch Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Titel
Short-Term Load Forecasting by Artificial Intelligent Technologies
Autoren
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Herausgeber
MDPI
Ort
Basel
Datum
2019
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-03897-583-0
Abmessungen
17.0 x 24.4 cm
Seiten
448
Schlagwörter
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies