Seite - 151 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Bild der Seite - 151 -
Text der Seite - 151 -
Energies2018,11, 2080
howtheNNismuch lessdependenton the chosen thresholdwhile theARperformance is clearly
thrownoffbyamisadjustedthreshold.
Table4.Forecastingerror (RMSE)withdifferentHDDthresholdadjustment inBarcelona.
TypeofDayand
Model HDDThreshold
13 14 15 16 17 18 19 20 21 22 23 24 25
Overall AR 2.00% 1.98% 1.96% 1.95% 1.94% 1.92% 1.91% 1.91% 1.91% 1.91% 1.92% 1.93% 1.94%
NN 1.92% 1.93% 1.93% 1.93% 1.94% 1.92% 1.92% 1.93% 1.92% 1.92% 1.93% 1.93% 1.94%
Hot AR 2.62% 2.63% 2.63% 2.62% 2.60% 2.58% 2.55% 2.53% 2.50% 2.48% 2.46% 2.43% 2.45%
NN 2.54% 2.55% 2.55% 2.53% 2.56% 2.54% 2.55% 2.54% 2.52% 2.51% 2.51% 2.46% 2.47%
Cold AR 2.16% 2.11% 2.07% 2.03% 2.00% 1.99% 1.99% 1.99% 1.99% 2.00% 2.01% 2.02% 2.02%
NN 1.65% 1.67% 1.69% 1.71% 1.71% 1.68% 1.71% 1.68% 1.72% 1.67% 1.71% 1.69% 1.69%
1.70%
1.73%
1.76%
1.79%
1.82%
1.85%
1.88%
1.91%
1.88%
1.90%
1.92%
1.94%
1.96%
1.98%
2.00%
2.02%
13 14 15 16 17 18 19 20 21 22 23 24 25
HDD Threshold (ºC)
Overall Accuracy vs HDD threshold offset
BAR - AR
BAR - NN
ZAR - AR
ZAR - NN
Figure10.Overall forecastingerror (RMSE)withdifferentHDDthresholdadjustment inBarcelona
andZaragoza.
4.4.NumberofNeurons
Thenumberof neurons in thehidden layer affects both computational burdenand theNN’s
performance. Therefore,bothaspectsarereportedasresultsonthis test. Table5showstheaccuracy
of theneuralnetworkas thenumberofneurons is increased. Inaddition, the forecasting timefora
single24-hprofile is included. It isworthnoticing that therestof forecastingprocesses likedataaccess
or treatmentalsoconsumetimeand, therefore, thereportedtimeisnot theonlyconcern inorder to
obtaina timely forecast.
Table5.Forecastingerror (RMSE)andexecutiontimewithdifferentnumberofneurons.
TypeofDay NumberofNeurons
3 4 5 10 15 20
Overall 1.56% 1.55% 1.56% 1.55% 1.58% 1.62%
Regular 1.49% 1.46% 1.45% 1.44% 1.46% 1.50%
Special 2.00% 2.10% 2.28% 2.31% 2.36% 2.46%
Hot 2.00% 1.93% 1.95% 1.93% 2.00% 2.04%
Cold 1.55% 1.45% 1.51% 1.48% 1.51% 1.58%
Time(s) 1.610 1.615 1.620 1.630 1.639 1.643
Testconditions: 7YT,10RN,5TL,12MF,7/14LAG.
151
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Titel
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Autoren
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2019
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 448
- Schlagwörter
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Kategorie
- Informatik