Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Page - 67 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 67 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Image of the Page - 67 -

Image of the Page - 67 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text of the Page - 67 -

The primal-dual algorithm for the solution of (7) will also require knowledge of the operator norm ‖∆‖. An estimate can be found via power iteration [4], which computesλmax, the eigenvalue of ∆ with the greatest modulus if it is well separated from other eigenvalues. Note that this eigenvalue λmax equals‖∆‖due to∆beingsymmetric andpositive semidefinite. The iterationsteps of theprimal-dual algorithmaregiven, in theabstract form,as     wk+1 = (id+σ∂F ∗)−1(wk+σ∆u¯k) uk+1 = (id+τ∂IΩ) −1(uk−τ∆wk+1) u¯k+1 = 2uk+1−uk (9) for suitableparameterτ,σ∈ (0,∞) such that‖∆‖2τσ<1.SinceF∗(u) = 1 2 ‖u‖22 isdifferentiable, a simple computation shows that∂F∗(u) =u, thus z= (id+σ∂F∗)−1(u)⇐⇒ z+σz=u⇐⇒ z= u 1+σ . Further, z= (id+τ∂IΩ) −1(u)⇐⇒ z+τ∂IΩ(z)3u⇐⇒ 0∈∂ (1 2 ‖u−·‖22 +τIΩ(·) ) (z) ⇐⇒ z∈argmin v∈U ‖u−v‖22 +τIΩ(v)⇐⇒ z∈argmin v∈Ω ‖v−u‖22 (10) ⇐⇒ z=PΩ(u), wherePΩ(u) denotes the projection ofu onto Ω, i.e., onto the element in Ω with minimal distance tou. Hence, (10) can be solved by projecting onto the closest feasible point. We can compute this projection for each node individually since only point constraints are considered, i.e., whether or not ‖ui−u0i‖≤ ridoesnotdependontheothernodes’ locations. Theprojectionforeachnode issimply the projectionon theball of radiusri centeredat theoriginal locationu0i, i.e., PΩ(u)i=p(ui,u0i,ri), with p(x,y,r) = { x if‖x−y‖≤ r, r(x−y) ‖x−y‖+y else. (11) Note that Ω, and hence,u0i andri, do not change during the iteration andri is determined according to(3)and(4). Byinserting(10)and(11) into(9), the iterationscanbecomputedbysimplearithmetic operations resulting in Algorithm1. Algorithm1Primal-Dual algorithm for minimisinggraph-Laplacianwithadaptiveconstraints Input: Original point-coordinates u˜0 of mesh, edge informationE,maskingof surfacepointsS. 1: u0← extract surf coo(u˜0), r←get radii(u˜0,E,S),Ω←get Ω(r,u0) .constraints 2: ∆←get ∆(E,S), ‖∆‖←powiter(∆) . inititialisationofLaplacian 3: u←u0, u¯←u0,w←0∈R3×N, τ←‖∆‖−1, σ←‖∆‖−1 4: repeat 5: w← (w+σ∆u¯) (1+σ) . updateof thedualvariable 6: u¯←PΩ(u−τ∆w) .updateof theprimalvariable 7: u←2u¯−u .updateof theextragradient 8: (u,u¯)← (u¯,u) . interchangeofuand u¯ 9: untilmaximalnumber of iterations is reached 10: returnu Output:u+ =u surfacepoint-coordinatesof smoothedmesh. 5 67
back to the  book Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Title
Proceedings
Subtitle
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Authors
Peter M. Roth
Kurt Niel
Publisher
Verlag der Technischen Universität Graz
Location
Wels
Date
2017
Language
English
License
CC BY 4.0
ISBN
978-3-85125-527-0
Size
21.0 x 29.7 cm
Pages
248
Keywords
Tagungsband
Categories
International
Tagungsbände

Table of contents

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Proceedings