Page - 67 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Image of the Page - 67 -
Text of the Page - 67 -
The primal-dual algorithm for the solution of (7) will also require knowledge of the operator norm
‖∆‖. An estimate can be found via power iteration [4], which computesλmax, the eigenvalue of ∆
with the greatest modulus if it is well separated from other eigenvalues. Note that this eigenvalue
λmax equals‖∆‖due to∆beingsymmetric andpositive semidefinite.
The iterationsteps of theprimal-dual algorithmaregiven, in theabstract
form,as
wk+1 = (id+σ∂F ∗)−1(wk+σ∆u¯k)
uk+1 = (id+τ∂IΩ)
−1(uk−τ∆wk+1)
u¯k+1 = 2uk+1−uk (9)
for suitableparameterτ,σ∈ (0,∞) such that‖∆‖2τσ<1.SinceF∗(u) = 1
2 ‖u‖22 isdifferentiable, a
simple computation shows that∂F∗(u) =u, thus
z= (id+σ∂F∗)−1(u)⇐⇒ z+σz=u⇐⇒ z= u
1+σ .
Further,
z= (id+τ∂IΩ)
−1(u)⇐⇒ z+τ∂IΩ(z)3u⇐⇒ 0∈∂ (1
2 ‖u−·‖22 +τIΩ(·)
)
(z)
⇐⇒ z∈argmin
v∈U ‖u−v‖22 +τIΩ(v)⇐⇒ z∈argmin
v∈Ω ‖v−u‖22 (10)
⇐⇒ z=PΩ(u),
wherePΩ(u) denotes the projection ofu onto Ω, i.e., onto the element in Ω with minimal distance
tou. Hence, (10) can be solved by projecting onto the closest feasible point. We can compute this
projection for each node individually since only point constraints are considered, i.e., whether or not
‖ui−u0i‖≤ ridoesnotdependontheothernodes’ locations. Theprojectionforeachnode issimply
the projectionon theball of radiusri centeredat theoriginal locationu0i, i.e.,
PΩ(u)i=p(ui,u0i,ri), with p(x,y,r) = {
x if‖x−y‖≤ r,
r(x−y)
‖x−y‖+y else. (11)
Note that Ω, and hence,u0i andri, do not change during the iteration andri is determined according
to(3)and(4). Byinserting(10)and(11) into(9), the iterationscanbecomputedbysimplearithmetic
operations resulting in Algorithm1.
Algorithm1Primal-Dual algorithm for minimisinggraph-Laplacianwithadaptiveconstraints
Input: Original point-coordinates u˜0 of mesh, edge informationE,maskingof surfacepointsS.
1: u0← extract surf coo(u˜0), r←get radii(u˜0,E,S),Ω←get Ω(r,u0) .constraints
2: ∆←get ∆(E,S), ‖∆‖←powiter(∆) . inititialisationofLaplacian
3: u←u0, u¯←u0,w←0∈R3×N, τ←‖∆‖−1, σ←‖∆‖−1
4: repeat
5: w← (w+σ∆u¯)
(1+σ) . updateof thedualvariable
6: u¯←PΩ(u−τ∆w) .updateof theprimalvariable
7: u←2u¯−u .updateof theextragradient
8: (u,u¯)← (u¯,u) . interchangeofuand u¯
9: untilmaximalnumber of iterations is reached
10: returnu
Output:u+ =u surfacepoint-coordinatesof smoothedmesh.
5
67
Proceedings
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Title
- Proceedings
- Subtitle
- OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Authors
- Peter M. Roth
- Kurt Niel
- Publisher
- Verlag der Technischen Universität Graz
- Location
- Wels
- Date
- 2017
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-85125-527-0
- Size
- 21.0 x 29.7 cm
- Pages
- 248
- Keywords
- Tagungsband
- Categories
- International
- Tagungsbände