Web-Books
im Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Seite - 67 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 67 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Bild der Seite - 67 -

Bild der Seite - 67 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text der Seite - 67 -

The primal-dual algorithm for the solution of (7) will also require knowledge of the operator norm ‖∆‖. An estimate can be found via power iteration [4], which computesλmax, the eigenvalue of ∆ with the greatest modulus if it is well separated from other eigenvalues. Note that this eigenvalue λmax equals‖∆‖due to∆beingsymmetric andpositive semidefinite. The iterationsteps of theprimal-dual algorithmaregiven, in theabstract form,as     wk+1 = (id+σ∂F ∗)−1(wk+σ∆u¯k) uk+1 = (id+τ∂IΩ) −1(uk−τ∆wk+1) u¯k+1 = 2uk+1−uk (9) for suitableparameterτ,σ∈ (0,∞) such that‖∆‖2τσ<1.SinceF∗(u) = 1 2 ‖u‖22 isdifferentiable, a simple computation shows that∂F∗(u) =u, thus z= (id+σ∂F∗)−1(u)⇐⇒ z+σz=u⇐⇒ z= u 1+σ . Further, z= (id+τ∂IΩ) −1(u)⇐⇒ z+τ∂IΩ(z)3u⇐⇒ 0∈∂ (1 2 ‖u−·‖22 +τIΩ(·) ) (z) ⇐⇒ z∈argmin v∈U ‖u−v‖22 +τIΩ(v)⇐⇒ z∈argmin v∈Ω ‖v−u‖22 (10) ⇐⇒ z=PΩ(u), wherePΩ(u) denotes the projection ofu onto Ω, i.e., onto the element in Ω with minimal distance tou. Hence, (10) can be solved by projecting onto the closest feasible point. We can compute this projection for each node individually since only point constraints are considered, i.e., whether or not ‖ui−u0i‖≤ ridoesnotdependontheothernodes’ locations. Theprojectionforeachnode issimply the projectionon theball of radiusri centeredat theoriginal locationu0i, i.e., PΩ(u)i=p(ui,u0i,ri), with p(x,y,r) = { x if‖x−y‖≤ r, r(x−y) ‖x−y‖+y else. (11) Note that Ω, and hence,u0i andri, do not change during the iteration andri is determined according to(3)and(4). Byinserting(10)and(11) into(9), the iterationscanbecomputedbysimplearithmetic operations resulting in Algorithm1. Algorithm1Primal-Dual algorithm for minimisinggraph-Laplacianwithadaptiveconstraints Input: Original point-coordinates u˜0 of mesh, edge informationE,maskingof surfacepointsS. 1: u0← extract surf coo(u˜0), r←get radii(u˜0,E,S),Ω←get Ω(r,u0) .constraints 2: ∆←get ∆(E,S), ‖∆‖←powiter(∆) . inititialisationofLaplacian 3: u←u0, u¯←u0,w←0∈R3×N, τ←‖∆‖−1, σ←‖∆‖−1 4: repeat 5: w← (w+σ∆u¯) (1+σ) . updateof thedualvariable 6: u¯←PΩ(u−τ∆w) .updateof theprimalvariable 7: u←2u¯−u .updateof theextragradient 8: (u,u¯)← (u¯,u) . interchangeofuand u¯ 9: untilmaximalnumber of iterations is reached 10: returnu Output:u+ =u surfacepoint-coordinatesof smoothedmesh. 5 67
zurück zum  Buch Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Titel
Proceedings
Untertitel
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Autoren
Peter M. Roth
Kurt Niel
Verlag
Verlag der Technischen Universität Graz
Ort
Wels
Datum
2017
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-527-0
Abmessungen
21.0 x 29.7 cm
Seiten
248
Schlagwörter
Tagungsband
Kategorien
International
Tagungsbände

Inhaltsverzeichnis

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Proceedings