Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Page - 212 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 212 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Image of the Page - 212 -

Image of the Page - 212 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text of the Page - 212 -

3.3. DifferentFormulationsofMotionEquations Equations (8) and (9) are the point of departure, for many formulations. These formulations are necessary,becausesolving this systemofequations (Eq. 8,9),which iscalledadifferential algebraic equation(DAE), isverycomplex.Moreover, it isnotappropriate for the inversedynamics. Toreduce it to an ordinary differential equation (ODE), the constraint forcesmust be eliminated. This paper presents theminimaland redundantcoordinates formulation [2], [4], [8], [7]. 3.3.1. MinimalCoordinatesFormulation There are six independent joint angles,without thegeometrical constraints.While introducing these fourconstraints, thenumberof independentangleswillbe reduced formsix to two. Thus, thecoordi- nates canbesplit independentqd and independentqiones q= ( qd qi ) , qd∈Rn−δ, qi∈Rδ. (10) Moreover, thekinematicconstraints (Eq. 7) canbedivided too, toexpress thedependent jointveloc- itiesexplicitly Jq˙=Jqdq˙d+Jqiq˙i=0, q˙=Fq˙i, F= (−J−1qdJqi Iδ ) , F∈Rn,δ (11) with the identitymatrix I. MatrixF is therefore anorthogonal complementof the JacobianmatrixJ, i.e. theproduct ofbothvanishes identically (JF≡ 0). Since theconstraint forcesvanishwithmatrix F, it is anappropriateprojectorand leads to theminimalcoordinates formulation M(q)q¨i+C(q, q˙)q˙i+Q(q, q˙)=A T(q)c (12) with F= ( P A ) , A∈Rm,δ, P∈Rn−m,δ (13) M :=FTMF, C :=FT(CF+MF˙), Q :=FTQ. (14) Thisformulationconsistsofδ independentequations.Adrawbackistheselectionoftwoindependent, local appropriate coordinates. Therefore parametrization singularities canoccur. Amethod to avoid this is to switchbetweenmotionequationswithdifferent independentcoordinates selection [4]. 3.3.2. RedundantCoordinatesFormulation Theproblemof the latter formulation(Eq. 12)are theparametrizationsingularities,due to thechoice of independent coordinates. There are two possibilities to avoid this. The first way, the switching method,hasbeenmentionedbefore. Theotherway is touseanother formulationwithoutanycoordi- nates selection,bymeansofanull-spaceprojector NJ,M := In−J+MJ, NJ,M∈Rnn (15) with the rightpseudoinverse J+M=M −1JT(JM−1JT)−1. (16) 212
back to the  book Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Title
Proceedings
Subtitle
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Authors
Peter M. Roth
Kurt Niel
Publisher
Verlag der Technischen Universität Graz
Location
Wels
Date
2017
Language
English
License
CC BY 4.0
ISBN
978-3-85125-527-0
Size
21.0 x 29.7 cm
Pages
248
Keywords
Tagungsband
Categories
International
Tagungsbände

Table of contents

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Proceedings