Seite - 212 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Bild der Seite - 212 -
Text der Seite - 212 -
3.3. DifferentFormulationsofMotionEquations
Equations (8) and (9) are the point of departure, for many formulations. These formulations are
necessary,becausesolving this systemofequations (Eq. 8,9),which iscalledadifferential algebraic
equation(DAE), isverycomplex.Moreover, it isnotappropriate for the inversedynamics. Toreduce
it to an ordinary differential equation (ODE), the constraint forcesmust be eliminated. This paper
presents theminimaland redundantcoordinates formulation [2], [4], [8], [7].
3.3.1. MinimalCoordinatesFormulation
There are six independent joint angles,without thegeometrical constraints.While introducing these
fourconstraints, thenumberof independentangleswillbe reduced formsix to two. Thus, thecoordi-
nates canbesplit independentqd and independentqiones
q= (
qd
qi )
, qd∈Rn−δ, qi∈Rδ. (10)
Moreover, thekinematicconstraints (Eq. 7) canbedivided too, toexpress thedependent jointveloc-
itiesexplicitly
Jq˙=Jqdq˙d+Jqiq˙i=0, q˙=Fq˙i, F= (−J−1qdJqi
Iδ )
, F∈Rn,δ (11)
with the identitymatrix I. MatrixF is therefore anorthogonal complementof the JacobianmatrixJ,
i.e. theproduct ofbothvanishes identically (JF≡ 0). Since theconstraint forcesvanishwithmatrix
F, it is anappropriateprojectorand leads to theminimalcoordinates formulation
M(q)q¨i+C(q, q˙)q˙i+Q(q, q˙)=A T(q)c (12)
with
F= (
P
A )
, A∈Rm,δ, P∈Rn−m,δ (13)
M :=FTMF, C :=FT(CF+MF˙), Q :=FTQ. (14)
Thisformulationconsistsofδ independentequations.Adrawbackistheselectionoftwoindependent,
local appropriate coordinates. Therefore parametrization singularities canoccur. Amethod to avoid
this is to switchbetweenmotionequationswithdifferent independentcoordinates selection [4].
3.3.2. RedundantCoordinatesFormulation
Theproblemof the latter formulation(Eq. 12)are theparametrizationsingularities,due to thechoice
of independent coordinates. There are two possibilities to avoid this. The first way, the switching
method,hasbeenmentionedbefore. Theotherway is touseanother formulationwithoutanycoordi-
nates selection,bymeansofanull-spaceprojector
NJ,M := In−J+MJ, NJ,M∈Rnn (15)
with the rightpseudoinverse
J+M=M
−1JT(JM−1JT)−1. (16)
212
Proceedings
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Titel
- Proceedings
- Untertitel
- OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Autoren
- Peter M. Roth
- Kurt Niel
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Wels
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-527-0
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 248
- Schlagwörter
- Tagungsband
- Kategorien
- International
- Tagungsbände