Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Page - 213 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 213 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Image of the Page - 213 -

Image of the Page - 213 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text of the Page - 213 -

SinceJNJ,M≡0, the transformation leads to the redundantcoordinates formulation M˜(q)q¨+ C˜(q, q˙)q˙+Q˜(q, q˙)= A˜ T (q)c (17) with NJ,M= ( P˜ A˜ ) , A˜∈Rm,n, P˜∈Rn−m,n (18) M˜ :=NTJ,MMNJ,M, C˜ :=N T J,M(CNJ,M+MN˙J,M), Q˜ :=N T J,MQ. (19) Unlikebefore, this formulationconsistsofnequations,whereδonesare independent. 4. Model-BasedControlwithanAugmentedPD-Controller Model-based control is very important for parallelmechanismswith actuation redundancy, because of the antagonistic forces. As the name, redundant actuation, implies, there aremore driving forces thandegreesof freedomm>δloc to control themechanism. However,with this feature it is possible to increase the internal preload and thus, e.g. to annihilate backlashdue tomanufacturingormanipulate theEEstiffness [9], [5], [6]. Thegeneralized force of an augmentedPDController consists of three parts. Thefirst part is a feed forward termcalculatedwith the inversedynamics,which releases the feedbackcontroller. Thus, the joint angle error ismuch smaller. The second one is a feedback term,withweighted error position andvelocity of the joint angles. Andfinally the third onehas nodynamic effect i.e. it increases the internal forces. For further information, see [2], [4], [8], [7]. 4.1. InverseDynamics The inversedynamics solution is thebasis for anaugmentedPDoracomputed torquecontroller. 4.1.1. MinimalCoordinatesFormulation Thesolutionof the inversedynamics isgivenbyminimizationof (c−c0)TW(c−c0)as c= ( AT (q) )+ W ( M(q) q¨i+C(q, q˙) q˙i+Q(q, q˙) )︸ ︷︷ ︸ 1 +NAT,W(q)c 0︸ ︷︷ ︸ 3 (20) with theweightingmatrixW and an arbitrary preload parameter vector c0. Furthermore, (AT)+W= W−1A(ATW−1A)−1 is the rightpseudoinverseandNAT ,W= Im−(AT) + WA T is anull spaceprojector ofmatrixAT. 4.1.2. RedundantCoordinatesFormulation Thenumberofequationsof the redundant coordinates formulation ishigher, than thenumberof free parametersc∈Rm (n<m). Furthermore, there areδ independent equations, i.e. onlyδ columnsof A˜ T are linear independent. ThereforeEq. 17mustbe rewrittenas y˜ = A˜ T c= A˜ T 1c1+ A˜ T 2c2, c1∈Rδ, c2∈Rm−δ, (21) c1 = ( A˜ T 1 )+( y˜− A˜T2c2 ) , ( A˜ T 1 )+ = ( A˜1A˜ T 1 )−1 A˜1, (22) 213
back to the  book Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Title
Proceedings
Subtitle
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Authors
Peter M. Roth
Kurt Niel
Publisher
Verlag der Technischen Universität Graz
Location
Wels
Date
2017
Language
English
License
CC BY 4.0
ISBN
978-3-85125-527-0
Size
21.0 x 29.7 cm
Pages
248
Keywords
Tagungsband
Categories
International
Tagungsbände

Table of contents

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Proceedings