Seite - 213 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Bild der Seite - 213 -
Text der Seite - 213 -
SinceJNJ,M≡0, the transformation leads to the redundantcoordinates formulation
M˜(q)q¨+ C˜(q, q˙)q˙+Q˜(q, q˙)= A˜ T
(q)c (17)
with
NJ,M= (
P˜
A˜ )
, A˜∈Rm,n, P˜∈Rn−m,n (18)
M˜ :=NTJ,MMNJ,M, C˜ :=N T
J,M(CNJ,M+MN˙J,M), Q˜ :=N T
J,MQ. (19)
Unlikebefore, this formulationconsistsofnequations,whereδonesare independent.
4. Model-BasedControlwithanAugmentedPD-Controller
Model-based control is very important for parallelmechanismswith actuation redundancy, because
of the antagonistic forces. As the name, redundant actuation, implies, there aremore driving forces
thandegreesof freedomm>δloc to control themechanism.
However,with this feature it is possible to increase the internal preload and thus, e.g. to annihilate
backlashdue tomanufacturingormanipulate theEEstiffness [9], [5], [6].
Thegeneralized force of an augmentedPDController consists of three parts. Thefirst part is a feed
forward termcalculatedwith the inversedynamics,which releases the feedbackcontroller. Thus, the
joint angle error ismuch smaller. The second one is a feedback term,withweighted error position
andvelocity of the joint angles. Andfinally the third onehas nodynamic effect i.e. it increases the
internal forces. For further information, see [2], [4], [8], [7].
4.1. InverseDynamics
The inversedynamics solution is thebasis for anaugmentedPDoracomputed torquecontroller.
4.1.1. MinimalCoordinatesFormulation
Thesolutionof the inversedynamics isgivenbyminimizationof (c−c0)TW(c−c0)as
c= (
AT (q) )+
W (
M(q) q¨i+C(q, q˙) q˙i+Q(q, q˙)
)︸
︷︷ ︸
1 +NAT,W(q)c
0︸
︷︷ ︸
3 (20)
with theweightingmatrixW and an arbitrary preload parameter vector c0. Furthermore, (AT)+W=
W−1A(ATW−1A)−1 is the rightpseudoinverseandNAT ,W= Im−(AT) +
WA T is anull spaceprojector
ofmatrixAT.
4.1.2. RedundantCoordinatesFormulation
Thenumberofequationsof the redundant coordinates formulation ishigher, than thenumberof free
parametersc∈Rm (n<m). Furthermore, there areδ independent equations, i.e. onlyδ columnsof
A˜ T
are linear independent. ThereforeEq. 17mustbe rewrittenas
y˜ = A˜ T
c= A˜ T
1c1+ A˜ T
2c2, c1∈Rδ, c2∈Rm−δ, (21)
c1 = (
A˜ T
1 )+(
y˜− A˜T2c2 )
, (
A˜ T
1 )+
= (
A˜1A˜ T
1 )−1
A˜1, (22)
213
Proceedings
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Titel
- Proceedings
- Untertitel
- OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Autoren
- Peter M. Roth
- Kurt Niel
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Wels
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-527-0
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 248
- Schlagwörter
- Tagungsband
- Kategorien
- International
- Tagungsbände