Web-Books
im Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Seite - 40 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 40 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Bild der Seite - 40 -

Bild der Seite - 40 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text der Seite - 40 -

Patchsize 8×8 12×12 16×16 24×24 32×32 48×48 Falsenegatives 152 (8.03%) 229 (12.10%) 187 (9.88%) 213 (11.25%) 248 (13.10%) 290(15.32%) Falsepositives 593 (31.37%) 418 (22.12%) 444 (23.49%) 436 (23.07%) 337 (17.83%) 408(21.59%) Accuracy 0.8031 0.8290 0.8332 0.8283 0.8454 0.8155 Table1: Evaluationof thenetworkperformanceon differentpatchsizes geneousskinaround the tattooandsimplebackground. Wesee thatmany tattoopatchesarecorrectly detected,but therearealsosomemisclassifications. Inmoredifficultexampleswithmorebackground containing textured objects, the number of false positives rises. In the context of de-identification, this problem could be addressed by combining this detector with other stages of a de-identification pipeline, e.g. byeliminatingdetections outsideofcandidateperson locations. (a) the original images (b) labeled tattoopatches Figure4: Theoutputof thenetwork on full images. 5. Conclusion andoutlook Weaddressed thechallengingproblemof tattoodetectionforsoftbiometricde-identification. Instead of hand-crafting image features, we applied deep learning. We trained and evaluated a deep convo- lutional neural network using the dataset of positive and negative patches generated from a subset of ImageNet tattoo images annotated by hand. Our findings indicate that using a convolutional neural network toclassify small imagepatchescanbea reliableway todetect candidate tattoo regions inan image. Patchsizesshouldbekept small, up to32×32patches, inorder toobtainbestaccuracy,good foreground-backgroundsegmentationandminimize falsenegatives. In our future work, we plan to combine this method with other stages of a de-identification pipeline inorder to solve theproblemof falsepositives. Asourqualitativeanalysis shows that themajorityof false positives are in the surroundings rather than on the person, one possibility is to run the method only on the outputs of a person detector. We also plan to quantitatively evaluate the performance of our network on full tattoo images (as opposed to patches), and investigate whether this performance couldbe improvedbymerging thedetections intoblobs. 40
zurück zum  Buch Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Titel
Proceedings
Untertitel
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Autoren
Peter M. Roth
Kurt Niel
Verlag
Verlag der Technischen Universität Graz
Ort
Wels
Datum
2017
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-527-0
Abmessungen
21.0 x 29.7 cm
Seiten
248
Schlagwörter
Tagungsband
Kategorien
International
Tagungsbände

Inhaltsverzeichnis

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Proceedings