Bremsstrahlung
Bremsstrahlung ist die elektromagnetische Strahlung, die durch die Beschleunigung eines elektrisch geladenen Teilchens, z. B. eines Elektrons, entsteht. Entgegen der Namensgebung tritt diese Strahlung nicht nur dann auf, wenn sich der Betrag der Geschwindigkeit verringert, sondern auch, wenn er sich vergrößert oder die Geschwindigkeit nur ihre Richtung verändert. Von Bremsstrahlung im engeren Sinne spricht man, wenn Teilchen in Materie gebremst werden.
Vom Standpunkt der Quantenelektrodynamik aus lässt sich die Erzeugung von Bremsstrahlung erklären, dass jede Wechselwirkung von geladenen Teilchen mit der Emission oder Absorption von Photonen, den Quanten der elektromagnetischen Strahlung, verbunden ist.
Auftreten bzw. Anwendung
Bei Teilchenbeschleunigern (vor allem bei Synchrotronen) und bei Speicherringen wird bei der Ablenkung geladener Teilchen durch ein Magnetfeld Bremsstrahlung frei, die in diesen Zusammenhängen Synchrotronstrahlung genannt wird.
Der Effekt der Bremsstrahlung wird in Röntgenröhren zur Erzeugung von Röntgenstrahlung verwendet. Dabei schießt man Elektronen mit einer kinetischen Energie ab 30 keV auf eine Metallplatte, die häufig aus Wolfram besteht. Ein kleiner Teil der beim Abbremsen frei werdenden Energie wird in Röntgenstrahlung mit einem kontinuierlichen Spektrum (einem Röntgenkontinuum) umgewandelt.
Bremsstrahlung kann außerdem die Entwicklung und Gestalt elektrischer Entladungen beeinflussen[1] sowie hochenergetische terrestrische Gammablitze und Positronen erzeugen.[2]
Physik der Bremsstrahlung
Das elektromagnetische Feld bewegter Ladungen wird durch die Liénard-Wiechert-Potentiale beschrieben. Danach sind das elektrische Feld und das magnetische Feld durch
gegeben.[3] Es bezeichnen
- den Einheitsvektor zwischen Beobachtungspunkt und Ort des Teilchens,
- den Abstand zwischen Beobachtungspunkt und Ort des Teilchens
- die elektrische Ladung des Teilchens,
- die Geschwindigkeit in Einheiten der Lichtgeschwindigkeit,
- den Lorentzfaktor ,
- die Lichtgeschwindigkeit,
- die Elektrische Feldkonstante und
- das Subskript , dass die Argumente zur retardierten Zeit auszuwerten sind.
In dieser Form sind die elektrischen und magnetischen Felder in ein Geschwindigkeitsfeld, das nur von der momentanen Geschwindigkeit abhängt, und ein Beschleunigungsfeld unterteilt. Das Beschleunigungfeld hat dabei ein Abhängigkeit proportional zu , sodass seine Leistungsdichte im Unendlichen nicht verschwindet. Es ist daher ein Strahlungsfeld.
Die Komponente des Poynting-Vektors dieses Strahlungsfeldes in Beobachtungsrichtung, was der Leistungsdichte entspricht, ist
entsprechend der abgestrahlten Leistung zur retardierten Zeit pro Raumwinkelemenent
- .
Dies ist die relativistische Verallgemeinerung der Larmor-Formel für den Energieverlust beschleunigter Ladungen.[4]
Das Frequenzspektrum der Bremsstrahlung ergibt sich nach einer Fourier-Transformation der abgestrahlten Gesamtenergie zu[5]
mit
- der Intensität ,
- der Winkelfrequenz und
- der Bahnkurve des geladenen Teilchens .
Spektralverteilung der Bremsstrahlung einer Röntgenröhre
Zu kurzen Wellenlängen hin hat das Spektrum eine Grenzwellenlänge, die der kinetischen Energie der Elektronen entspricht, d. h. die gesamte kinetische Energie der Elektronen wird in Röntgenstrahlung umgewandelt. Diese Grenzwellenlänge hängt nur von der durchlaufenen Beschleunigungsspannung (Anodenspannung) ab, sie ist unabhängig vom Anodenmaterial; die Form des Spektrums hängt ab von der Geschwindigkeitsverteilung der Elektronen und dem verwendeten Metall.
Die kürzestmögliche Wellenlänge (siehe Duane-Hunt-Gesetz) tritt auf, wenn die gesamte kinetische Energie des Elektrons in die Strahlungsenergie eines einzigen Photons umgewandelt wird:
mit
- der Elementarladung des Elektrons
- der Beschleunigungs- bzw. Anodenspannung der Röntgenröhre
- dem Planckschen Wirkungsquantum
- der Frequenz .
Mit
-
- ( c für die Lichtgeschwindigkeit)
folgt
Durch Einsetzen der Naturkonstanten h, c und e ergibt sich die zugeschnittene Größengleichung:
Die untere Grenzwellenlänge hängt also nur von der Beschleunigungsspannung ab; bei einer Beschleunigungsspannung von 25 kV beträgt sie 0,05 nm. Diese Strahlung vermag bereits normales Glas und dünne Aluminiumplatten zu durchdringen. Daher müssen bei Farb-Bildröhren, die mit Beschleunigungsspannungen von 25 bis 27 kV arbeiten (Schwarzweiß-Bildröhre: ca. 18 kV), Maßnahmen zum Strahlenschutz getroffen werden. Man verwendet daher Bleiglas für den Kolben.
Die kontinuierliche Energieverteilung der Bremsstrahlung , wenn Elektronen in ein Material eintreten, ist nach Kramers[7] über die Frequenz linear. Nach Umrechnung in die Wellenlängendarstellung ergibt sich:
mit
- der dimensionslosen Kramersschen Konstanten ,
- dem Elektronenstrom und
- der Ordnungszahl der Atome des Materials .
Bezogen auf die spektrale Anzahldichte der Photonen ergibt sich
Bei realen Spektren von Röntgenemissionen wird die entstehende Bremsstrahlung durch verschiedene Effekte überlagert. Hinzu kommt insbesondere die charakteristische Strahlung (Peaks in der Abb.), die ein Emissionsspektrum der Atome des Materials darstellt, sowie dessen Absorptionsbanden, da die Bremsstrahlung unter der Materialoberfläche entsteht.
Elektron-Elektron-Bremsstrahlung
Ein für kleine Ordnungszahlen wichtiger Prozess ist die Streuung freier Elektronen an den Schalenelektronen eines Atoms oder Moleküls.[8] Da diese Elektron-Elektron-Bremsstrahlung eine Funktion von , die Elektron-Kern-Bremsstrahlung jedoch eine Funktion von ist, kann die Elektron-Elektron-Bremsstrahlung für Metalle vernachlässigt werden. Für Luft jedoch spielt sie eine wichtige Rolle bei der Erzeugung terrestrischer Gammablitze.[9]
Weblinks
Einzelnachweise
- ↑ Köhn, C., Chanrion, O., Neubert, T. The influence of bremsstrahlung on electric discharge streamers in N2, O2 gas mixtures Plasma Sources Sci. Technol. (2017), vol. 26, 015006. doi:10.1088/0963-0252/26/1/015006.
- ↑ Köhn, C., Ebert, U. Calculation of beams of positrons, neutrons, and protons associated with terrestrial gamma ray flashes Journal Geophys. Res. (2015), vol. 120, pp. 1620–1635. doi:10.1002/2014JD022229.
- ↑ John David Jackson: Klassische Elektrodynamik. 3. Auflage. De Gruyter, Berlin • New York 2002, ISBN 3-11-016502-3, S. 766.
- ↑ John David Jackson: Klassische Elektrodynamik. 3. Auflage. De Gruyter, Berlin • New York 2002, ISBN 3-11-016502-3, S. 771–772.
- ↑ John David Jackson: Klassische Elektrodynamik. 3. Auflage. De Gruyter, Berlin • New York 2002, ISBN 3-11-016502-3, S. 779.
- ↑ Universität Ulm: Röntgenbremsstrahlung
- ↑ XCIII. On the theory of X-ray absorption and of the continuous X-ray spectrum H. A. Kramers in Philos. Mag. Ser. 6, 46 (1923) Pages 836–871 doi:10.1080/14786442308565244
- ↑ Frédéric Tessier, Iwan Kawrakow: Calculation of the electron–electron bremsstrahlung cross-section in the field of atomic electrons. In: Nuclear Instruments and Methods in Physics Research Section B. Band 266, Nr. 4, 2008, S. 625–634, doi:10.1016/j.nimb.2007.11.063.
- ↑ Köhn, C., Ebert, U. The importance of electron-electron Bremsstrahlung for terrestrial gamma-ray flashes, electron beams and electron-positron beams J. Phys. D.: Appl. Phys. as Fast Track Communication (2014), vol. 47, 252001. (abstract)
License Information of Images on page#
Image Description | Credit | Artist | License Name | File |
---|---|---|---|---|
Erzeugung von Röntgenbremsstrahlung durch Abbremsung eines schnellen Elektrons in dem Coulombfeld eines Atomkerns (schematische Darstellung) | Eigenes Werk mittels: Martin, Dylan (2005). X-Ray Detection . University of Arizona Optical Sciences Center. Archived from the original on 2006-09-09 . Retrieved on 2008-12-05 . Flynn, Chris (2001). 6.6.2 Free-Free or Bremsstrahlung Scattering . Tuorla Observatory. Retrieved on 2008-12-05 . | Die Autorenschaft wurde nicht in einer maschinell lesbaren Form angegeben. Es wird Journey234 als Autor angenommen (basierend auf den Rechteinhaber-Angaben). | Datei:Bremsstrahlung.svg | |
The Wikimedia Commons logo, SVG version. | Original created by Reidab ( PNG version ) SVG version was created by Grunt and cleaned up by 3247 . Re-creation with SVG geometry features by Pumbaa , using a proper partial circle and SVG geometry features. (Former versions used to be slightly warped.) | Reidab , Grunt , 3247 , Pumbaa | Datei:Commons-logo.svg | |
Emission spectrum of an old Cu X-ray tube | Die Autorenschaft wurde nicht in einer maschinell lesbaren Form angegeben. Es wird angenommen, dass es sich um ein eigenes Werk handelt (basierend auf den Rechteinhaber-Angaben). | Die Autorenschaft wurde nicht in einer maschinell lesbaren Form angegeben. Es wird Perditax als Autor angenommen (basierend auf den Rechteinhaber-Angaben). | Datei:Tube Cu LiF.PNG | |
Datei:Wiktfavicon en.svg |