Wir freuen uns über jede Rückmeldung. Ihre Botschaft geht vollkommen anonym nur an das Administrator Team. Danke fürs Mitmachen, das zur Verbesserung des Systems oder der Inhalte beitragen kann. ACHTUNG: Wir können an Sie nur eine Antwort senden, wenn Sie ihre Mail Adresse mitschicken, die wir sonst nicht kennen!
unbekannter Gast
Dies ist Version . Es handelt sich nicht um die aktuelle Version und kann folglich auch nicht geändert werden.
[Zurück zur aktuellen Version]    [Diese Version wiederherstellen]
vom 17.07.2014, aktuelle Version,

Tesla (Einheit)

Physikalische Einheit
Einheitenname Tesla

Einheitenzeichen
Physikalische Größe(n) Magnetische Flussdichte
Formelzeichen
Dimension
System Internationales Einheitensystem
In SI-Einheiten
In CGS-Einheiten
Benannt nach Nikola Tesla
Abgeleitet von Weber, Quadratmeter
Siehe auch: Gauß

Tesla (T) ist eine abgeleitete SI-Einheit für die magnetische Flussdichte. Die Einheit wurde im Jahre 1960 auf der Conférence Générale des Poids et Mesures (CGPM) in Paris nach Nikola Tesla benannt.

Im CGS-System, das vor allem noch in der theoretischen Physik verwendet wird, ist die entsprechende Einheit Gauß:

Die Geophysik benutzte auch die Einheit Gamma (γ):


Größenbeispiele

Beispiele für verschiedene magnetische Flussdichten in der Natur und in der Technik:

Magnetische
Flussdichte

in Tesla
Beispiel
100 p bis 10 n (10−10 bis 10−8) magnetische Flussdichte im Weltraum
31 µ (3,1 · 10−5) Erdmagnetfeld am Äquator
48 µ (4,8 · 10−5) Erdmagnetfeld am 50. Breitengrad
100 µ (10−4) zulässiger Grenzwert für elektromagnetische Felder bei 50 Hz (Haushaltsstrom) in Deutschland gemäß der 26. BImSchV
0,1 handelsüblicher Hufeisenmagnet[1]
0,25 ein typischer Sonnenfleck
1,61 maximale magnetische Flussdichte eines NdFeB-Magneten (Neodym-Eisen-Bor). Typischerweise werden die Magnete mit Flussdichten zwischen 1 T und 1,5 T hergestellt. NdFeB-Magnete sind derzeit die stärksten Dauermagnete
0,35 bis 3,0 Kernspintomograph für die Anwendung am Menschen. Zu Forschungszwecken werden auch Geräte mit 7,0 T und mehr verwendet.
8,6 supraleitende Dipolmagnete des Large Hadron Collider des CERN in Betrieb[2]
23,5 derzeit stärkster supraleitender Magnet in der NMR-Spektroskopie (1000 MHz-Spektrometer)
26,8 Die stärkste magnetische Flussdichte, die mit einem supraleitenden Material erzeugt wurde[3] (mehr als 2.000 T bei destruktiven Verfahren).
45 Die stärkste stetige magnetische Flussdichte, welche durch einen Hybridmagnet (resistiv + supraleitend) erzeugt wurde (Labor der Florida State University in Tallahassee, Florida).[4]
91,4 Pulsspule - stärkste stetig erreichte magnetische Flussdichte, erzeugt in einer faserbandagierten 200 kg Kupfer-Doppelspule (resistiv) für wenige Millisekunden, per Stromstoß aus einer Kondensatorbatterie (Institut Hochfeld-Magnetlabor Dresden (HLD) im Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Juni 2011)[5]
34.000 Maser, aber nur für 10 ps kurze Dauer[6]
106 bis 108 magnetische Flussdichte auf einem Neutronenstern
108 bis 1011 magnetische Flussdichte auf einem Magnetar
1013 maximale physische magnetische Flussdichte eines Neutronensterns
  Wiktionary: Tesla  – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. LHC Dipolmagnet Funktionsprinzip. Abgerufen am 4. August 2011.
  2. CERN FAQ – LHC the guide. ; abgerufen am 22. August 2010 (PDF; 27,0 MB, englisch).
  3. wissenschaft.de: Erfolg beim Erzeugen starker Magnetfelder
  4. National High Magnetic Field Laboratory : The Magnet Lab at Florida State University (Tallahassee).
  5. Helmholtz-Zentrum Dresden-Rossendorf:Die stärksten Magnetfelder entstehen in Dresden.
  6. Helmholtz-Zentrum Dresden-Rossendorf : Übersicht über Magnetfelder im Labor und in der Natur