Embryonale Genregulation durch mechanische Reize#
Molekulare Grundlagen dafür bereits 600 Millionen Jahre alt#
Damit Zellen in unserem Körper "wissen", wo sie hingehören und was sie werden sollen, bekommen sie schon früh in der Embryonalentwicklung Instruktionen in Form einer genetischen Regulationskaskade. In einer aktuellen Publikation im Fachjournal "PNAS" haben der Entwicklungsbiologe Ulrich Technau und sein Team von der Universität Wien herausgefunden, dass neben diesem genetischen Programm auch mechanische Reize zur Aktivierung von Entwicklungsgenen beitragen können. Die Analyse von Embryonen der Seeanemone legt nahe, dass dies eine uralte Eigenschaft ist.
Jahrzehnte molekularer und genetischer Forschung haben gezeigt, dass die embryonale Entwicklung durch eine genetische Regulationskaskade gesteuert wird. In den letzten Jahren haben aber etliche Untersuchungen gezeigt, dass auch mechanische Reize einen Einfluss auf das Differenzierungsverhalten von Zellen haben können. Die meisten dieser Studien waren jedoch Experimente an Zellkulturen.
Ulrich Technau vom Department für Molekulare Evolution und Entwicklung der Universität Wien konnte nun nachweisen, dass in einem sensiblen Zeitfenster der Embryonalentwicklung mechanische Reize die Aktivität von wichtigen Entwicklungsgenen beeinflussen können. Dazu hat die Erstautorin der Studie, Ekaterina Pukhlyakova, Embryonen der Seeanemone Nematostella vectensis untersucht. Wenn während der Bildung der inneren und äußeren Zellschichten, der sogenannten Gastrulation, die Kontraktion des zellulären Muskelproteins Myosin unterdrückt wurde, wurde dadurch in reversibler Weise die gesamte Gastrulation blockiert. Überraschenderweise war im Zuge dessen auch das wichtige Entwicklungsgen Brachyury abgeschaltet. "Wenn wir aber diesen Myosin-blockierten Embryonen mechanischem Stress in Form eines Gewichts aussetzten, schaltete sich das inaktive Gen Brachyury wieder an – trotz des Myosininhibitors", erklärt Technau.
Mittels eines speziellen Mikroskops, das die "Steifheit" von Zellen messen konnte, fanden die AutorInnen heraus, dass die Zellen um den Gastrulationspol (Blastoporus) in normalen Embryonen tatsächlich "steifer" waren als ihre Nachbarn, also offenbar unter mechanischem Druck standen. Doch wie wurden die mechanischen Reize in das biochemische Signal einer Genaktivität umgewandelt? In weitergehenden Experimenten wiesen die AutorInnen nach, dass dafür das Protein Beta-Catenin verantwortlich war. Beta-Catenin findet sich in allen Tieren, auch im Menschen und hat eine wichtige duale Funktion sowohl in der Verbindung von Zellen miteinander als auch in der Regulation von Genaktivität im Zellkern in Reaktion auf Signale zwischen den Zellen. "Wir vermuten, dass es zwischen der genetischen und mechanischen Genregulation eine Feedback-Schleife gibt", so Pukhlyakova.
Da die Genregulation durch mechanische Reize mittels Beta-Catenin auch bei Fliegen und Fischen zu finden ist, nehmen die ForscherInnen an, dass dieses Grundprinzip bereits in gemeinsamen Vorfahren von Wirbeltieren und Seeanemonen vor rund 600 Millionen Jahren entstanden ist.
Publikation in "PNAS":#
"b-catenin dependent mechanotransduction dates back to the common ancestor of Cnidaria and Bilateria": Ekaterina Pukhlyakova, Andy Aman, Kareem Elsayad, Ulrich Technau. Proceedings of the Academy of Sciences (PNAS), Article #17-13682DOI: 10.1073/pnas.1713682115
http://www.pnas.org/cgi/doi/10.1073/pnas.1713682115
Wissenschaftlicher Kontakt#
Univ.-Prof. Dr. Ulrich TechnauDepartment für Molekulare Evolution und Entwicklung
Universität Wien
1090 - Wien, Althanstraße 14
+43-1-4277-570 00
+43-664-60277-570 00
ulrich.technau nospam@TUGraz.at @univie.ac.at
Rückfragehinweis#
Mag. Alexandra FreyPressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 - Wien, Universitätsring 1
+43-1-4277-175 33
+43-664-60277-175 33
alexandra.frey nospam@TUGraz.at @univie.ac.at