Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Seite - 51 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 51 - in Charge Transport in DNA - Insights from Simulations

Bild der Seite - 51 -

Bild der Seite - 51 - in Charge Transport in DNA - Insights from Simulations

Text der Seite - 51 -

4.2TheStructuralChangesofDNAuponStretching polyG.The reason for this is that the3’–3’ distancedoesnot correspondexactly to the lengthof theDNAmoleculesmeasuredalongthehelicalaxis.Nevertheless, the 3’–3’distancewillbeconsidered in thisworkbecause it is thecoordinate thatDNA will be pulled along,motivated by the single-molecule conductivity experiments. Interestingly, the fluctuation of this distance is smaller for polyG than for polyA with shorterDNAdouble strandsoffive andninebasepairs,while it is larger for G13 than forA13. Theabsenceofanyobvious trendsmaybecausedby the fact that thestudiedDNAoligomersarequite short,withonlyA13 andG13 constitutingone completehelical turn. Also, the helical parameters rise, slide and twist were evaluated for the studied DNA species and are presented in table 4.5. This table shows the mean values of the helical parameters of all considered base-pair steps. For an overview over all parameters for every single step, see tablesA.1 andA.2 in the appendix. The smaller values of twist and the larger negative values of slide in case of polyG sequences indicate theseDNAstrands toassumeanA-like conformation,which is in accordancewith expectations. However, no cleardifferencebetweenpolyAand polyGwasobserved for rise. 4.2 TheStructuralChangesofDNAuponStretching Aseries of simulationswas performed inwhich an additional external forcewas applied on the 3’-endO3’ atoms of the particular DNA species. To simulate the stretchingwithin a tractable simulation time, themagnitude of the external force was increasedgradually in timewith the rate of 50pN/ns (83pN/ns forA13 and G13). Thisway, the force at the endof anMDsimulation of 20ns reached avalue of 1.00 nN (1.66 nN for A13 and G13). This turned out to be sufficient to finally separate the strands in all of the studied DNA species. As a measure of length of theDNAoligomer, the distance of the 3’-endO3’ atomswasmonitored along the simulation. See figure 4.2 for an example profile of this distance vs time or, equivalently, external force, andfigure4.3 for a set of representative snapshots. The helical double-stranded structure of the A9 oligomer is preserved up to ca. 200 pN. Then, the end-to-end distance increases by over two thirds of the initial lengthwithin avery short interval of time. This indicates the transition to a struc- 51
zurück zum  Buch Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Titel
Charge Transport in DNA
Untertitel
Insights from Simulations
Autor
Mario Wolter
Verlag
KIT Scientific Publishing
Datum
2013
Sprache
englisch
Lizenz
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Abmessungen
17.0 x 24.0 cm
Seiten
156
Schlagwörter
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Kategorien
Naturwissenschaften Chemie

Inhaltsverzeichnis

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BüttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProfileofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA