Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Seite - 62 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 62 - in Charge Transport in DNA - Insights from Simulations

Bild der Seite - 62 -

Bild der Seite - 62 - in Charge Transport in DNA - Insights from Simulations

Text der Seite - 62 -

DNAUnderExperimentalConditions Figure4.11: Watson–Crickhydrogen-bondingpatternof themicrohydratedspeciesA13 in simulationwith stabilizing external force –Dry1 (top) andDry2 (bot- tom). Red–hydrogenbondpresent,white –nohydrogenbond. and there are several defects in theDry2 case. The hydrogen-bonding pattern in the shorter DNA oligomers is more vulnerable and is destroyed almost entirely within a fewnanoseconds in theDry2 systems. SeefigureA.2 in the appendix for a completeoverviewof thehydrogenpatternof thedifferent sequences. 4.5 EffectsofDecreased IonContent Another important component of themolecular system is the counterions,Na+ in thiscase. InanextremecaseofcompletelydehydratedDNAwithnoions, thehelix wouldunwind, and the strandswould separate readily due to the repulsive elec- trostatic interactionof thenegatively-chargedbackbones. Note that thephosphate groups in thebackbones retain theirnegative charges throughout thiswork.While a partial protonation of phosphates was considered in a previous study, where DNAunder harsh conditions (electrospray)wasmodeled,[122], thiswork aims at thedescriptionofDNAin themilder setupof single-molecule experimentswhere the solvent is removed partially with a stream of gas. Themost straightforward assumptionis thatofunchangedchargestateofphosphates,whichmaybeneutral- izedbycounterionsremaininginthehydrationshell. Then, thequestioniswhether thenumberofcounterionsnecessary forneutralizationwouldremain in thecluster or rather be carried awayby the streamof gas togetherwith the solvent. It is not possible toprovide ananswerbasedon the simulations in thiswork, yetwhat can bedone is to investigate if andhow the stability ofDNAstructure changeswhen the counterions are (partially) removed, at a givendegree of hydration. Todo so, the systemsDry1 andDry2 from theprevious section (with 1/10 and 1/20 of the 62
zurück zum  Buch Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Titel
Charge Transport in DNA
Untertitel
Insights from Simulations
Autor
Mario Wolter
Verlag
KIT Scientific Publishing
Datum
2013
Sprache
englisch
Lizenz
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Abmessungen
17.0 x 24.0 cm
Seiten
156
Schlagwörter
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Kategorien
Naturwissenschaften Chemie

Inhaltsverzeichnis

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BüttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProfileofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA