Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Seite - 67 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 67 - in Charge Transport in DNA - Insights from Simulations

Bild der Seite - 67 -

Bild der Seite - 67 - in Charge Transport in DNA - Insights from Simulations

Text der Seite - 67 -

4.7Conclusion cursatasmallerexternal force than in thecorrespondingsimulationwith thesame amount of water and the original number of counterions (passing from the red curve to theblue, and from thegreenone to theyellow). This effectwasobserved for allDNAspecies studied. The observations in stretching simulations are summarized in table 4.7. Certain trends are visible even thoughonly one simulationwasperformed for eachDNA species and considered conditions. So, larger force is needed to induce the over- stretching transition aswell as the separationof strands in themicrohydrated sys- temsDry1andDry2, comparedtothefullyhydratedDNA.Theeffectof thecontent of counterions ismoreblurred, yet still theonset of theoverstretched ladder struc- ture seems to occur at a smaller force if some counterions are removed from the microhydratedDNAcomplex. 4.7 Conclusion In this chapter, the structural features of microhydrated DNA and their changes upon stretching stress were investigated with classical MD simulation. The pre- liminarynatureof this studydoesnot allow todrawanyquantitative conclusions. Still, there are severalpoints tobemade. Both water and counterions are structure-stabilizing factors. The amount of wa- ter and the content of counterions necessary to support a helical double-stranded structure in the simulationswas characterized. The removal of a certain number of counterionsmaystabilize the structureof amicrohydratedDNAoligomer, even thoughsucha systembears anon-zero electric charge. Conformational transitions were observed at smaller forces when the DNA was stretchedmore slowly. This illustrates the irreversibility of the stretching process in the simulations,when the pulling is several orders ofmagnitude faster than in experiments. For this reason, further interpretationof the stretching simulations is limitedtothecomparisonoftheresponseofmicrohydratedDNAwiththeresponse ofDNAinsolution,pulledwith the same loading rates. The helical structure of DNAundergoesmarked changes upon removal ofwater fromthe cluster. First, thehelixbends toward themajorgroovewhere counterions 67
zurück zum  Buch Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Titel
Charge Transport in DNA
Untertitel
Insights from Simulations
Autor
Mario Wolter
Verlag
KIT Scientific Publishing
Datum
2013
Sprache
englisch
Lizenz
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Abmessungen
17.0 x 24.0 cm
Seiten
156
Schlagwörter
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Kategorien
Naturwissenschaften Chemie

Inhaltsverzeichnis

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BüttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProfileofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA