Wir freuen uns über jede Rückmeldung. Ihre Botschaft geht vollkommen anonym nur an das Administrator Team. Danke fürs Mitmachen, das zur Verbesserung des Systems oder der Inhalte beitragen kann. ACHTUNG: Wir können an Sie nur eine Antwort senden, wenn Sie ihre Mail Adresse mitschicken, die wir sonst nicht kennen!
unbekannter Gast
Dies ist Version . Es handelt sich nicht um die aktuelle Version und kann folglich auch nicht geändert werden.
[Zurück zur aktuellen Version]    [Diese Version wiederherstellen]
vom 03.06.2014, aktuelle Version,

RNA-Polymerase

RNA-Polymerase
Oberflächenmodell des RNA-Polymerase-II-Komplexes der Bäckerhefe (jede der 10 Untereinheiten unterschiedlich gefärbt), nach PDB 3G1G; RNA (links) und DNA (links+rechts) als Cartoon
Enzymklassifikationen
EC, Kategorie 2.7.7.6, Nukleotidyltransferase
Substrat Nucleosidtriphosphat + RNAn
Produkte Diphosphat + RNAn+1
EC, Kategorie 2.7.7.48, Nukleotidyltransferase
Reaktionsart Addition einer Ribonukleinsäure
Substrat Nucleosidtriphosphat + RNAn
Produkte Diphosphat + RNAn+1

RNA-Polymerasen, genauer DNA-abhängige RNA-Polymerasen, sind Enzyme (Polymerasen), die die Synthese von Ribonukleinsäuren (RNA) bei der Transkription der DNA katalysieren.

Bei Bakterien gibt es nur eine RNA-Polymerase die für die Expression aller Gene verantwortlich ist. Für die Synthese der RNA Primer der Replikation gibt es zusätzlich noch die Primase dnaG.

Bei Eukaryoten unterscheidet man drei Formen der RNA-Polymerase:

  1. die RNA-Polymerase I, die die Bildung von rRNA als prä-rRNA (45S wird prozessiert zu 18S; 5.8S; 28S) im Nucleolus katalysiert,
  2. die RNA-Polymerase II, die die Bildung der prä-mRNA, snoRNAs (small nucleolar RNAs) und mancher snRNAs (small nuclear RNA) sowie siRNA und miRNA[1] katalysiert, und
  3. die RNA-Polymerase III, die die Bildung von tRNA, 5S rRNA, 7SL-RNA, einiger snRNAs und anderer kleiner RNAs katalysiert.

Diese RNA-Polymerasen sind DNA-abhängig.

Die RNA-Polymerase II und III werden durch α-Amanitin gehemmt.

Die RNA-Polymerasen sind sehr komplex zusammengesetzt. Bei der Hefe sind zehn verschiedene Polypeptid-Ketten, deren Molekularmasse zwischen 7.700 und 140.000 Dalton liegen, Magnesium, Zink und zwei DNA-Ketten beteiligt. Insgesamt besteht diese RNA-Polymerase aus über 28.000 Atomen.

RNA-Polymerasen verfügen über einen einfachen Mechanismus zur Fehlererkennung: Wenn sich an eine Base der DNA ein unpassendes RNA-Nucleotid anlagert, so verbleibt die RNA-Polymerase länger an der entsprechenden DNA-Stelle. Dadurch wächst die Wahrscheinlichkeit, dass sich das falsche RNA-Nucleotid wieder von der DNA entfernt. Insgesamt wird durch diesen Mechanismus eine Genauigkeit von einem Fehler auf 10.000 Basenpaarungen erreicht. Dies entspricht etwa einem Fehler pro synthetisiertem RNA-Molekül. Die RNA-Synthese erfolgt in 5' → 3'-Richtung.

Damit entspricht das 5'-Ende der DNA dem 5'-Ende der mRNA, sowie dem N-terminalen Ende des neu entstehenden Proteins bei der Translation (Colinearität). Entsprechendes gilt für das 3'-Ende und den C-Terminus. Somit wird die ursprüngliche DNA-Sequenz ebenso wie die daraus folgende mRNA-Sequenz von der 3'-Richtung in die 5'-Richtung abgelesen und in das Protein (C-terminal → N-terminal) übersetzt.

RNA-Polymerasen benötigen im Gegensatz zu DNA-Polymerasen keinen Primer. Bei Escherichia coli wird der RNA-Strang durch die RNA-Polymerase mit einer Rate von ca. 50 Nukleotiden pro Sekunde (17 nm/s) vergrößert.

Für die Aufklärung des Mechanismus der Transkription mittels der RNA-Polymerase erhielt der US-amerikanische Chemiker Roger D. Kornberg 2006 den Nobelpreis für Chemie.

Einzelnachweise

  1. Alberts, et. al. Fifth Edition P. 340