Wir freuen uns über jede Rückmeldung. Ihre Botschaft geht vollkommen anonym nur an das Administrator Team. Danke fürs Mitmachen, das zur Verbesserung des Systems oder der Inhalte beitragen kann. ACHTUNG: Wir können an Sie nur eine Antwort senden, wenn Sie ihre Mail Adresse mitschicken, die wir sonst nicht kennen!
unbekannter Gast
Dies ist Version . Es handelt sich nicht um die aktuelle Version und kann folglich auch nicht geändert werden.
[Zurück zur aktuellen Version]    [Diese Version wiederherstellen]
vom 27.05.2014, aktuelle Version,

Stirlingformel

Die Stirling-Formel ist eine mathematische Formel, mit der man für große Fakultäten Näherungswerte berechnen kann. Sie ist benannt nach dem Mathematiker James Stirling.

Grundlegendes

Die Stirling-Formel in ihrer einfachsten Form ist eine asymptotische Formel

Zu den einzelnen Elementen dieser Formel siehe Fakultät (!), Quadratwurzel (√), Kreiszahl (π) und Eulersche Zahl (e).

Eine Ableitung findet sich im Artikel Sattelpunktsnäherung.

Genauer gilt für :

Insbesondere ist der Grenzwert des Bruches für gleich 1.

Die Stirling-Reihe für nach der Euler-MacLaurinschen Summenformel lautet

wobei die k-te Bernoulli-Zahl bezeichnet. Als Näherung betrachtet man lediglich eine endliche Zahl von Gliedern. Der Fehler liegt in der Größenordnung des ersten vernachlässigten Gliedes. Beispiel: bricht man nach dem dritten Glied ab, ist der absolute Fehler kleiner als . Die Reihe selbst konvergiert nicht für festes n, sie ist eine asymptotische Entwicklung.

Für n > 7,31×1043 genügt ein Glied für einen relativen Fehler kleiner als 1 Prozent:

Für genügen zwei Glieder für einen relativen Fehler kleiner als 0,1 Prozent:

Für kleine n lässt sich aus der Formel für drei Glieder eine einfache Formel für n! ableiten. Mit

ergibt sich die Approximation

Der Fehler ist (bei minimalem zusätzlichem Rechenaufwand zur Berechnung der ersten beiden Glieder) kleiner als 3 % für n = 0, kleiner als 1 % für n > 0 und kleiner als 0,1 % für n > 2.

Durch Einsetzen in die Exponentialfunktion ergibt sich für :

und durch Einsetzen der Stirlingschen Reihe in die Reihe der Exponentialfunktion:

wobei die Koeffizienten keinem einfachen Bildungsgesetz genügen.

Herleitung der ersten beiden Glieder

Die Formel wird oft in der statistischen Physik für den Grenzfall großer Teilchenzahlen verwendet, wie sie in thermodynamischen Systemen (Größenordnung Teilchen) vorkommen. Für thermodynamische Betrachtungen ist es meist völlig ausreichend die ersten beiden Glieder zu berücksichtigen. Diese Formel lässt sich einfach gewinnen, indem man nur den ersten Term der Euler-MacLaurin-Formel verwendet:

und wird dann in dieser Form gebraucht:

[1]

Verallgemeinerung: Stirling-Formel für die Gammafunktion

Für alle gilt

,

wobei eine Funktion ist, die für alle erfüllt.

Zu den einzelnen Elementen dieser Formel siehe Gammafunktion ( ), Quadratwurzel (√), Kreiszahl (π) und Eulersche Zahl (e).

Für alle ist der Wert einer Approximation von nach obiger Formel mit also immer etwas zu klein. Der relative Fehler ist aber für x ≥ 9 kleiner als 1 % und für x ≥ 84 kleiner als 0,1 %.

Es gilt für alle

,

womit sich als Spezialfall die Approximationsformeln des vorigen Abschnitts ergeben.

Anwendungen

Die Stirling-Formel findet überall dort Verwendung, wo die exakten Werte einer Fakultät nicht von Bedeutung sind. Insbesondere bei der Berechnung der Information einer Nachricht und bei der Berechnung der Entropie eines statistischen Ensembles von Subsystemen ergeben sich mit der Stirling-Formel starke Vereinfachungen.

Beispiel: Gegeben sei ein System mit verschiedenen Subsystemen, von denen jedes verschiedene Zustände annehmen kann. Ferner sei bekannt, dass der Zustand mit der Wahrscheinlichkeit angenommen werden kann. Damit müssen sich Subsysteme im Zustand befinden und es gilt . Die Zahl der möglichen Verteilungen eines so beschriebenen Systems beträgt dann

und für dessen Entropie gilt

Mittels der Stirling-Formel kann man nun bis auf Fehler der Ordnung diese Formel vereinfachen zu

Damit ergibt sich für die Entropie jedes der Subsysteme die bekannte Formel

In ähnlicher Weise erhält man (bis auf einen konstanten Vorfaktor) für den Informationsgehalt eines ebenso definierten Systems die Formel

Siehe auch

Einzelnachweise

  1. G. Joos, Lehrbuch der theoretischen Physik 1956, S. 516

Literatur