Wir freuen uns über jede Rückmeldung. Ihre Botschaft geht vollkommen anonym nur an das Administrator Team. Danke fürs Mitmachen, das zur Verbesserung des Systems oder der Inhalte beitragen kann. ACHTUNG: Wir können an Sie nur eine Antwort senden, wenn Sie ihre Mail Adresse mitschicken, die wir sonst nicht kennen!
unbekannter Gast
Dies ist Version . Es handelt sich nicht um die aktuelle Version und kann folglich auch nicht geändert werden.
[Zurück zur aktuellen Version]    [Diese Version wiederherstellen]
vom 31.03.2014, aktuelle Version,

Thomsonsche Schwingungsgleichung

Mit der Thomsonschen Schwingungsgleichung lässt sich die Resonanzfrequenz eines Schwingkreises mit der Kapazität C und der Induktivität L berechnen. Sie wurde 1853 von dem britischen Physiker William Thomson, dem späteren Lord Kelvin, entdeckt.

Oder umgeformt für die Schwingungszeit:

Herleitung

Im Resonanzfall ist der Resonanzwiderstand so groß wie der Serienwiderstand. Der kapazitive Widerstand des Kondensators und induktiver Widerstand der Spule innerhalb des Schwingkreises kompensieren sich auf null.

, da gilt
, üblich ist auch die Form:

Herleitung nach dem Energieerhaltungssatz

Betrachten wir den elektrischen Schwingkreis als ein geschlossenes System, so ist die Summe aller Energieformen in diesem System zu jeder Zeit t konstant.

: magnetische Feldenergie der Spule
: elektrische Feldenergie des Kondensators
: Gesamtenergie des Systems (konstant)

Setzt man die entsprechenden Formeln ein, so kommt man auf folgende Differentialgleichung:

Aus

folgt:

Nun leitet man diese Gleichung nach der Zeit ab und erhält:

, da im Schwingkreis gilt: .

Um diese Gleichung zu lösen, müssen wir einen Zusammenhang zwischen und herstellen. Dazu verwenden wir eine Sinusfunktion als Lösungsansatz, da sie sich auf Grund ihrer Periodizität gut zur Beschreibung einer Schwingung eignet.

: maximale Ladung (Amplitude)
: Kreisfrequenz
: Phasenverschiebung

Durch Einsetzen ergibt sich:

, da im Schwingkreis gilt:

Daraus folgt mit :

Die thomsonsche Schwingungsgleichung gilt allerdings nur für Serienschwingkreise und ideale Parallelschwingkreise. Bei komplexeren Topologien gilt es, die Frequenz für die Erfüllung der folgenden Bedingung selbst herzuleiten:

Des Weiteren muss bei der Anwendung der thomsonschen Schwingungsgleichung darauf geachtet werden, dass sich das jeweilige System im Schwingfall befindet – die Dämpfung durch den ohmschen Widerstand also nicht zu groß ist. Bei nicht zu großer Dämpfung kann die beim Parallelschwingkreis veränderte Resonanzfrequenz mit dem Verlustwiderstand RL von L berechnet werden: