Wir freuen uns über jede Rückmeldung. Ihre Botschaft geht vollkommen anonym nur an das Administrator Team. Danke fürs Mitmachen, das zur Verbesserung des Systems oder der Inhalte beitragen kann. ACHTUNG: Wir können an Sie nur eine Antwort senden, wenn Sie ihre Mail Adresse mitschicken, die wir sonst nicht kennen!
unbekannter Gast

Das Beziehungsleben der Mikroorganismen#

Harmonie in der Tiefsee#

orschungsschiff Pelagia: Am Deck die CTD-Rosette (Conductivity, temperature and density) zur Probennahme aus den Tiefen des Ozeans.
orschungsschiff Pelagia: Am Deck die CTD-Rosette (Conductivity, temperature and density) zur Probennahme aus den Tiefen des Ozeans.
Foto: © Gerhard J. Herndl

Ein Team unter der Leitung von Gerhard J. Herndl von der Universität Wien gemeinsam mit Kolleg*innen aus China und den USA hat neue Erkenntnisse zum Stoffwechsel in den tiefen Schichten der Ozeane gewonnen. Es zeigte durch eine Kombination von verschiedenen Messtechniken, dass Ammonium-oxidierende Crenarchaea und Nitrit-oxidierende Bakterien nicht nur eine wichtige Rolle im Stickstoff-, sondern auch im Kohlenstoffkreislauf des Ozeans spielen. Die häufiger vorkommenden Crenarchaea können zwar weniger Ammonium in Nitrit umwandeln als Bakterien, nehmen dafür aber drei- bis viermal mehr Kohlendioxid auf. So herrscht trotz der sehr unterschiedlichen Lebensstrategien der beiden Mikroorganismengruppen ein perfektes Gleichgewicht in den Ammonium- und Nitrit-Umsatzraten. Die Ergebnisse der Studie erscheinen aktuell im renommierten Fachjournal PNAS.

Kohlendioxid ist das häufigste Gas in den Ozeanen. Es tritt dort in höherer Konzentration auf als in der Atmosphäre. Kohlendioxid wird von Mikroorganismen wie den Ammonium-oxidierenden Archaea und von den Nitrit-oxidierenden Bakterien verwendet, um Biomasse aufzubauen. In dieser Biomasse wird das Kohlendioxid gebunden und kann von Organismen beweidet werden. Aus dem sonnendurchfluteten Oberflächenwasser rieseln abgestorbene Organismen in die Tiefsee, die dort den Tiefseelebensgemeinschaften als Nahrung dienen. Die Ausscheidungsprodukte – wie etwa Ammonium – werden ins Wasser abgegeben und dann zunächst zu Nitrit und in weiterer Folge zu Nitrat abgebaut.

Dieser zweistufige Prozess wird von diesen zwei Mikroorganismengruppen zur Energiegewinnung durchgeführt. Dies sind die Ammonium-oxidierenden Crenarchaea und die Nitrit-oxidierenden Bakterien (vorwiegend Nitrospina). Durch den jeweiligen "Verdauungsprozess" wird jene Energie gewonnen, die für die Umwandlung von Kohlendioxid in organische Kohlenstoffverbindungen notwendig ist. Dieser Vorgang ähnelt der Photosynthese von Pflanzen, wobei nicht Sonnenlicht als Energiequelle dient, sondern eben Ammonium bzw. Nitrit. Ammonium-oxidierende Crenarchaea kommen in der Tiefsee wesentlich häufiger vor als die Nitrit-oxidierenden Bakterien. Das würde deutlich höhere Nitritkonzentrationen erwarten lassen als tatsächlich gemessen werden.

Wie funktioniert die Wechselwirkungen im Stoffwechsel der Crenarchaea und der Bakterien?#

"Unsere Frage lautete daher: Wie kommt es nun, dass die beiden Prozesse offensichtlich so eng miteinander verknüpft sind, obwohl die Häufigkeit der beiden Mikroorganismengruppen, die diesen Kreislauf betreiben, so unterschiedlich ist?", erklärt Gerhard Herndl vom Department für Funktionelle und Evolutionäre Ökologie.

Basierend auf Messungen der Aktivitäten in der Wassersäule des Pazifiks und im Labor ergibt sich nun ein umfassendes Bild des Stickstoffkreislaufes in den Tiefen des Ozeans. Ammonium-oxidierende Crenarchaea kommen wesentlich häufiger vor als die Nitrit-oxidierenden Bakterien. Allerdings wandelt jede Crenarchaea-Zelle zwei bis zehnmal Ammonium zu Nitrit langsamer um, als eine Nitrit-oxidierende Bakterienzelle Nitrit zu Nitrat. Ammonium-oxidierende Crenarchaea nehmen etwa drei- bis viermal mehr Kohlendioxid in organischen Kohlenstoff auf pro aufgenommenem Ammonium als Nitrit-oxidierende Bakterien Nitrit. Diese höhere Effizienz in der Kohlendioxid-Umwandlung der Ammonium-oxidierenden Crenarchaea bedeutet auch, dass sie drei- bis viermal höhere Wachstumsraten haben als Nitrit-oxidierende Bakterien. Diese höheren Wachstumsraten der Ammonium-oxidierenden Crenarchaea kompensieren somit ihre niedrigere Effizienz in der Oxidation von Ammonium. Die hohen Wachstumsraten der Crenarchaea sind mit hohen Verlustraten verbunden, weil die Crenarchaea einem höheren Beweidedruck von anderen Meeresbewohnern ausgesetzt sind als die langsam wachsenden Nitrit-oxidierenden Bakterien.

Somit ist die Oxidation von Ammonium zu Nitrit und von Nitrit zu Nitrat in den Tiefen des Ozeans in Balance, trotz der sehr unterschiedlichen Lebensstrategien von Ammonium-oxidieren Crenarchaea und Nitrit-oxidierenden Bakterien. Dass Crenarchaea in den Tiefen des Ozeans häufig sind und dass sie Ammonium oxidieren ist überhaupt erst seit etwa 15 Jahren bekannt, als das erste marine Crenarchaeum aus einem Aquariumfilter isoliert wurde. Eine der ersten Arbeiten zur Rolle dieser Crenarchaea im Ozean wurde von der Arbeitsgruppe von Gerhard J. Herndl im Jahr 2005 verfasst. Die gegenwärtige Studie zeigt nun vertiefend deren Interaktion mit Nitrit-oxidierenden Bakterien und verdeutlicht, dass auch sehr unterschiedliche Strategien zwischen zwei Organismengruppen zu einer harmonischen Interaktion führen können.

Methode zur Untersuchung von Stickstoff als Energiequelle#

Im Fokus der Arbeit standen die Messung der Aktivitäten der Umsetzung der Stickstoffquellen der beiden Mikroorganismengruppen von Oberflächengewässer bis in die Tiefsee, der Messungen der Aktivitäten von ausgewählten Vertretern der beiden Mikroorganismengruppen im Labor und schließlich die Modellierung der Interaktionen der beiden Mikroorganismengruppen, die trotz ihrer so unterschiedlichen Häufigkeit offensichtlich effizient Ammonium zu Nitrat oxidieren und somit den Nährstoff für die Algenproduktion in den sonnendurchfluteten Oberflächengewässern liefern, die die Grundlage des Nahrungsnetzes des Ozeans bilden.

Die Studie über den Abbau organischen Materials in der Tiefsee wurde unter anderem vom Wissenschaftsfonds (FWF), sowie vom European Research Council (ERC) gefördert.

Publikation in PNAS:#

"Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean": Yao Zhang, Wei Qin, Lei Hou, Emily J. Zakem, Xianhui Wan, Zihao Zhao, Li Liu, Kristopher A. Hunt, Nianzhi Jiao, Shuh-Ji Kao, Kai Tang, Xiabing Xie, Jiaming Shen, Yufang Li, Mingming Chen, Xiaofeng Dai, Chang Liu, Wenchao Deng, Minhan Dai, Anitra E. Ingalls, David A. Stahl, Gerhard J. Herndl
DOI: 10.1073/pnas.1708779115

Wissenschaftlicher Kontakt#

Univ.-Prof. Dr. Gerhard J. Herndl
Department für Funktionelle und Evolutionäre Ökologie
Universität Wien
1090 - Wien, Althanstraße 14 (UZA I)
+43-1-4277-764 31
+43-664-60277-764 31
gerhard.herndl@univie.ac.at

Rückfragehinweis#

Mag. Alexandra Frey
Pressebüro und stv. Pressesprecherin
Universität Wien
1010 - Wien, Universitätsring 1
+43-1-4277-175 33
+43-664-60277-175 33
alexandra.frey@univie.ac.at