Seite - 22 - in Charge Transport in DNA - Insights from Simulations
Bild der Seite - 22 -
Text der Seite - 22 -
TheoreticalBackground
This densitywill differ from theDFTdensity byΔρ. The total energy then canbe
calculatedby:
E[ρ]=E[ρ0]+O(Δρ2) (2.20)
Assumingthereferencedensityρ tobesufficientlyclose to thegroundstatedensity
ρ0, the Kohn–Sham equations can be solved non-self-consistently and the Kohn–
Shameigenvalues i areobtained.
Eoccelec=∑
i i (2.21)
This represents the contributionof theKohn–Shameigenvalues to the total energy
of the system. This energy is called electronic energy. To obtain the total energy,
another term, called the repulsive energy, which incorporates all other missing
contributions isneeded.
E[ρ]=∑
i i+Erep (2.22)
Two-body termsVαβ are introduced to represent these repulsive contributions, be-
ing exponential functions fitted to reproduce geometries, vibrational frequencies
and reactionenergies.
E[ρ]=∑
i i+ 1
2∑
αβ Vαβ (2.23)
Already at this point, DFTB is able to describe unpolar systems,where no charge
transfer happens between the single atoms. As many hetero-nuclear molecules,
includingbiomolecules, havedifferences in electronegativity, amore sophisticated
approachhas tobesought. Theself-consistent-chargeDFTBmethod(DFTB2) over-
comes this issuebyasecond-orderTaylorexpansionof theDFTtotal energy.Here,
charge density fluctuationsΔρ around a given reference density ρ0, which is the
superpositionofneutral atomicdensities, are considered[66–68].
22
Charge Transport in DNA
Insights from Simulations
- Titel
- Charge Transport in DNA
- Untertitel
- Insights from Simulations
- Autor
- Mario Wolter
- Verlag
- KIT Scientific Publishing
- Datum
- 2013
- Sprache
- englisch
- Lizenz
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0082-7
- Abmessungen
- 17.0 x 24.0 cm
- Seiten
- 156
- Schlagwörter
- Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
- Kategorien
- Naturwissenschaften Chemie
Inhaltsverzeichnis
- Zusammenfassung 1
- Summary 3
- 1 Introduction 5
- 2 TheoreticalBackground 11
- 3 SimulationSetup 39
- 4 DNAUnderExperimentalConditions 49
- 5 ChargeTransport inStretchedDNA 69
- 6 ChargeTransport inMicrohydratedDNA 79
- 7 AParametrizedModel toSimulateCT inDNA 89
- 8 Conclusion 105
- Appendix 111
- A DNAUnderExperimentalConditions 111
- B CTinMicrohydratedDNA 117
- List ofPublications 137