Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Seite - 70 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 70 - in Charge Transport in DNA - Insights from Simulations

Bild der Seite - 70 -

Bild der Seite - 70 - in Charge Transport in DNA - Insights from Simulations

Text der Seite - 70 -

ChargeTransport inStretchedDNA Figure5.1: The central seven base pairs of theDNAoligomerGGbeing stretched up to the additional extension of ca. 25 % of the free length by pulling at the 3’-ends. The backbones are depicted as ribbons, with color coding the conformation: blue –helical, B-like dsDNA; red– ladder-like S-DNA.The helical dsDNAstructure passes to a ladder-like one, gradually. tral fragment, 5’-(G)13-3’ (GG), 5’-GG(AG)4G-3’ (GA) and 5’-CC(A)9CC-3’ (AA). And fouroligomerswithpurinesdistributedamongboth strands,5’-GG(TG)5G-3’ (GT), 5’-GG(CG)4G-3’ (GC), 5’-GG(AT)3AGG-3’ (AT) and 5’-CGCGAATTCGCG-3’ (DD,Dickerson’sdodecameradopted fromPDBID1BNA).[108] Stretching simulations, as described in chapter 4, were performed for these seven oligomers. Fromthe stretching simulationswith linear increasing force, sequences of14 to19 (dependingonDNAspecies) snapshotsof thestructurewere taken. The snapshots were taken startingwith the canonical helical structure until just after the conformational change to the ladder-like structure. Representative snapshots of the corresponding structures are shown inïŹgure5.1. Thelengthof thecentral fragmentofsevenbasepairs (eight incaseofDD)of theses sequences started at ca. 90%of the equilibrium length observed in the freeNPT simulation, seeTab.5.1, and increased in stepsof0.1nm. Starting from these snapshot structures with different lengths MD simulation of 20nswereperformed. In these simulations the lengthof the central fragmentwas restrained bymeans of a harmonic potential acting between the 3’-terminal O3’- atomsof the central fragmentwith a force constant of 1000kcal ·mol−1·nm−2, or 6,948pN/nm. TheïŹrst5nsof thesesimulationswerediscarded,andtheremaining 15nswere taken for further analysis. In the stretching simulations, all of theDNAspecies go through a transition to a ladder-like conformation (S-DNA).[21]The transition isgradual,meaning thatone 70
zurĂŒck zum  Buch Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Titel
Charge Transport in DNA
Untertitel
Insights from Simulations
Autor
Mario Wolter
Verlag
KIT Scientific Publishing
Datum
2013
Sprache
englisch
Lizenz
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Abmessungen
17.0 x 24.0 cm
Seiten
156
Schlagwörter
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Kategorien
Naturwissenschaften Chemie

Inhaltsverzeichnis

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BĂŒttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProïŹleofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA