Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Charge Transport in DNA - Insights from Simulations
Seite - 101 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 101 - in Charge Transport in DNA - Insights from Simulations

Bild der Seite - 101 -

Bild der Seite - 101 - in Charge Transport in DNA - Insights from Simulations

Text der Seite - 101 -

7.4ChargeTransferExtensions Theobtainedrelaxationfunctiononlycoversadropof the IPofabout2.5eVwithin the initial100 fs followingaCTevent. Comparisonwiththedata intable7.4 reveals amissing portion of the relaxation amounting to 0.9 eV,which has to occur for a fully localized charge. Until now, the obtained relaxation function is scaled up to account for the larger decrease of the IP. This clearly is an issue in theCTmodel that requires a solution. Thework on thedescription of this additional relaxation ona longer time scale isunderwaypresently. TheHubbardMatrix Also, a Hubbard matrix is needed for CT simulations. This matrix contains the relevantparameters toestimate theenergychangeduetodifferenton-siteelectron– electrons interactions aswell as due to relaxation and rotation of orbitals. In this CTmodel, theHubbardmatrix dependsonly on the input sequence. Therefore, it is set uponlyonce at thebeginningand is kept for the rest of the simulation. It is built fromtwocomponents: First, thediagonal elementsare theHubbardparametersof eachnucleobase.Here, theHubbardparameters of guanine andadenine are implementedasfixedvalues obtained fromDFTB2 calculations; theyamount to5.66eVforguanineand5.58eV for adenine. Second, the off-diagonal elements take the form 1rij, where rij is the distance be- tween the centers of mass (COM) of the neighboring nucleobases. These off- diagonal elements have been calculated asmean values for every possible nucle- obase step. MD simulations of 20 ns were performed and the distances of the COMof the purine nucleobaseswere recorded. Table 7.5 shows themean values for the ten different base-pair steps. Notably, difference is found between intra- and interstranddistances. Table7.5: Mean values of theCOMdistances for the base-pair steps from 20nsMD simulations. X\Y–purine–pyrimidinestep,X/Y–pyrimidine–purinestep, X|Y–purine–purine step. Step A|A A/A A\A A|G G|A G/A A\G G|G G/G G\G Distance [nm] 0.3851 0.6940 0.5221 0.4144 0.3783 0.5238 0.6364 0.4142 0.6724 0.5109 101
zurück zum  Buch Charge Transport in DNA - Insights from Simulations"
Charge Transport in DNA Insights from Simulations
Titel
Charge Transport in DNA
Untertitel
Insights from Simulations
Autor
Mario Wolter
Verlag
KIT Scientific Publishing
Datum
2013
Sprache
englisch
Lizenz
CC BY-SA 3.0
ISBN
978-3-7315-0082-7
Abmessungen
17.0 x 24.0 cm
Seiten
156
Schlagwörter
Charge Transport, Charge Transfer, DNA, Molecular Dynamics, Quantum Mechanics
Kategorien
Naturwissenschaften Chemie

Inhaltsverzeichnis

  1. Zusammenfassung 1
  2. Summary 3
  3. 1 Introduction 5
  4. 2 TheoreticalBackground 11
    1. 2.1 MolecularMechanics 11
    2. 2.2 MolecularDynamicsSimulation 13
      1. 2.2.1 Solving theEquationsofMotion 14
      2. 2.2.2 ThermodynamicEnsembles 15
    3. 2.3 QuantumChemistry 18
      1. 2.3.1 DensityFunctionalTheory 18
      2. 2.3.2 ApproximativeDFT–Density-FunctionalTight-Binding 21
    4. 2.4 DynamicsofExcessCharge inDNA 24
      1. 2.4.1 TheMulti-ScaleFramework 25
      2. 2.4.2 TheFragmentOrbitalApproach 26
    5. 2.5 ChargeTransport inDNA 29
      1. 2.5.1 Landauer–BüttikerFramework 29
    6. 2.6 ChargeTransfer inDNA 32
      1. 2.6.1 Basics ofChargeTransfer 32
      2. 2.6.2 Non-adiabaticPropagationSchemes 34
  5. 3 SimulationSetup 39
    1. 3.1 TheDNAMolecule 39
      1. 3.1.1 InvestigatedDNASequences 42
    2. 3.2 MDSimulationofDNA 44
    3. 3.3 DNAunderMechanical Stress 45
    4. 3.4 MicrohydratedDNA 46
  6. 4 DNAUnderExperimentalConditions 49
    1. 4.1 FreeMDSimulations 50
    2. 4.2 TheStructuralChangesofDNAuponStretching 51
    3. 4.3 IrreversibilityofDNAStretching inSimulations 56
    4. 4.4 Effects ofLowHydration 58
    5. 4.5 Effects ofDecreased IonContent 62
    6. 4.6 Effect ofWater and Ionson theStretchingProfileofDNA 64
    7. 4.7 Conclusion 67
  7. 5 ChargeTransport inStretchedDNA 69
    1. 5.1 InvestigatedSequences andStructures 69
    2. 5.2 ChargeTransportCalculations 71
    3. 5.3 SequenceDependentChargeTransport 73
    4. 5.4 DetailedStructuralDifferences 74
    5. 5.5 Conclusion 76
  8. 6 ChargeTransport inMicrohydratedDNA 79
    1. 6.1 InvestigatedSequences andStructures 79
    2. 6.2 ChargeTransferParameters 80
    3. 6.3 ChargeTransportCalculations 84
    4. 6.4 DirectDynamicsofChargeTransfer 86
    5. 6.5 Conclusion 87
  9. 7 AParametrizedModel toSimulateCT inDNA 89
    1. 7.1 Creating theElectronicCouplings 90
    2. 7.2 Modeling the IonizationPotentials 93
    3. 7.3 TestingwithChargeTransportCalculations 97
    4. 7.4 ChargeTransferExtensions 98
    5. 7.5 TestingwithChargeTransferMethods 102
    6. 7.6 Conclusion 103
  10. 8 Conclusion 105
  11. Appendix 111
  12. A DNAUnderExperimentalConditions 111
    1. A.1 TheStructuralChangesofDNAuponStretching 111
    2. A.2 Effect ofLowHydrationandDecreased IonContent 112
    3. A.3 StretchingofMicrohydratedDNA 116
  13. B CTinMicrohydratedDNA 117
    1. B.1 HelicalParameters -CompleteOverview 117
    2. B.2 ElectronicCouplings 118
    3. B.3 IonizationPotentials 119
    4. B.4 ESP InducedbyDifferentGroupsofAtoms 122
    5. B.5 DistanceofChargedAtomGroups fromtheHelicalAxis 123
  14. List ofPublications 137
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Charge Transport in DNA