Wir freuen uns über jede Rückmeldung. Ihre Botschaft geht vollkommen anonym nur an das Administrator Team. Danke fürs Mitmachen, das zur Verbesserung des Systems oder der Inhalte beitragen kann. ACHTUNG: Wir können an Sie nur eine Antwort senden, wenn Sie ihre Mail Adresse mitschicken, die wir sonst nicht kennen!

unbekannter Gast
vom 28.03.2020, aktuelle Version,

Machscher Kegel

Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.
Machscher Kegel. Im Fall v > v s bildet sich eine Stoßwelle (blau dargestellt). v s bezeichnet hier die Schallgeschwindigkeit.
Animation Mach'scher-Kegel
Schlierenfoto eines Flugzeugmodells bei Mach 1,2 im Windkanal. Sichtbar sind schräge Verdichtungsstöße und Verdünnungsfächer, die durch die Umlenkung des Fluids entstehen. Sie unterscheiden sich im Winkel vom Machschen Kegel.
Ein Jagdbomber F/A-18 Hornet im Überschallflug mit Wolkenscheibeneffekt

Der Machsche Kegel ist eine Stoßwelle, die bei Wellen im Zusammenhang mit hohen Geschwindigkeiten auftritt. Er wurde nach Ernst Mach benannt.

Ein sich mit der Geschwindigkeit bewegendes Objekt verdichtet das Medium vor sich her, hiervon ausgelöste Schallwellen breiten sich mit Schallgeschwindigkeit kugelförmig aus. Bewegt sich jedoch das Objekt selbst mit Überschallgeschwindigkeit, also schneller als die Ausbreitungsgeschwindigkeit der Wellen, dann kann sich in Bewegungsrichtung des Objektes die Verdichtungsfront niemals vom Objekt ablösen und läuft damit permanent diesem voran. Die ausgelösten Stoßwellen formen sich, wie die Überlagerung von Elementarwellen nach dem Huygensschen Prinzip zeigt, zu einem im Bezugssystem des bewegten Objektes stationären Kegelmantel. Der halbe Spitzenwinkel dieses Kegels heißt Machscher Winkel.

Sichtbarer Machscher Kegel

Bei hoher Luftfeuchtigkeit wird die Stoßfront des Machschen Kegels als Wolkenscheibe sichtbar. Im Kegel folgt unmittelbar nach der Kompression ein ähnlich starker Unterdruck. Durch diese adiabatische Expansion überschreitet der Partialdruck des Wassers den Sättigungsdampfdruck deutlich. Als Folge kondensiert Wasserdampf zu kleinen Tröpfchen, die als Nebelwand sichtbar sind. Hinter der Stoßfront normalisiert sich der Luftdruck, die Tröpfchen verdampfen und der Nebel löst sich auf. Es entsteht der Eindruck einer am Flugzeug befestigten Wolkenscheibe.

Mit Schlierenoptik können Machsche Kegel im Windkanal dargestellt und vermessen werden[1].

Mathematische Beschreibung

Öffnungswinkel des Machschen Kegels

Die Gleichung für den halben Öffnungswinkel des Machschen Kegels lautet:

  • : in der Zeit zurückgelegter Weg
  • : machscher Winkel
  • : Schallgeschwindigkeit
  • : Fluggeschwindigkeit des Objekts
  • : Mach-Zahl

Bei Schallgeschwindigkeit hat der Kegelöffnungswinkel eine Größe von 180°. Der Kegel hat in diesem Fall die Form einer ebenen Stoßfront angenommen. Für bilden die sich durchdringenden Kugelwellenfronten Kegel mit konstruktiver Interferenz.

Beschreibung von dynamischen Wellenbildern

  • : Schallgeschwindigkeit
  • : Frequenz der Schallquelle
  • : Kreisfrequenz der Schallquelle
  • : Wellenlänge
  • : Geschwindigkeit des Flugzeugs
  • : Wellenpropagationskonstante
  • : Azimutaler Winkel (Polarkoordinaten)
Ein weiterer Jagdbomber F/A-18F Super Hornet im Überschallflug, Mai 2006

Beschreibung der Wellenfront als verschobene Kreisparametrisierung:

Graphische Darstellung des Wellenlängenvektors

Hierbei entspricht einem freien Parameter welcher sich im Intervall befindet, ist jedoch nicht gleich dem typischen azimutalen Umlaufwinkel der Polarkoordinaten. Die geometrische Herleitung ist in der Abbildung „Graphische Darstellung des Wellenlängenvektors“ zu sehen.

Die winkelabhängige Wellenlänge ist die Norm dieser Kreisparametrisierung:

Die Wellenpropagationskonstante lässt sich damit wie folgt angeben:

Der azimutale Umlaufwinkel wird in Abhängigkeit von aus den Komponenten des Wellenlängenvektors berechnet werden:

Eine effektive Umrechnung des azimutalen Winkels in den Parameterwinkel ist gegeben durch die folgende Formel in Determinanten-Schreibweise:

Einige Wellenbilder mit verschiedenen Machzahlen

Die Wellengleichung lässt sich damit als parametrisierte Fläche folgendermaßen beschreiben:

Der Parameter entspricht dem radialen Parameter der Polarkoordinaten. Die weiter oben zu sehende Animation ist nach diesem Berechnungsprinzip erstellt. Bei einer Mach-Zahl von 2 ist der Öffnungswinkel des Kegels exakt 30°.

Siehe auch

Einzelnachweise

  1. Überschallwindkanal mit Schlierenoptik (Memento vom 1. Januar 2014 im Internet Archive) (PDF-Datei; 182 kB)

License Information of Images on page#

Image DescriptionCreditArtistLicense NameFile
Doppler_Kegel_Wellenbild_Animation Eigenes Werk Funkmich008
CC BY-SA 4.0
Datei:Doppler Kegel Wellenbild Animation.gif
Pacific Ocean (Nov. 5, 2006) - An F/A-18F Super Hornet assigned to the "Diamondbacks" of Strike Fighter Squadron One Zero Two (VFA-102) completes a super-sonic flyby as part of an air power demonstration for visitors aboard USS Kitty Hawk (CV 63). VFA-102 is one of the nine squadrons and detachments assigned to Carrier Air Wing Five (CVW-5) and embarked aboard Kitty Hawk. Kitty Hawk and CVW-5 is currently deployed off the coast of southern Japan on a scheduled deployment. U.S. Navy photo by Mass Communication Specialist 3rd Class Jarod Hodge (RELEASED) Dieses Bild wurde von der US Navy mit der ID 061105-N-8591H-389 herausgegeben. Diese Markierung zeigt nicht den Urheberrechtsstatus des zugehörigen Werks an. Es ist in jedem Falle zusätzlich eine normale Lizenzvorlage erforderlich. Siehe Commons:Lizenzen für weitere Informationen. العربية ∙ বাংলা ∙ Deutsch ∙ Deutsch (Sie-Form) ∙ English ∙ español ∙ euskara ∙ فارسی ∙ français ∙ italiano ∙ 日本語 ∙ 한국어 ∙ македонски ∙ മലയാളം ∙ Plattdüütsch ∙ Nederlands ∙ polski ∙ پښتو ∙ português ∙ русский ∙ slovenščina ∙ svenska ∙ Türkçe ∙ українська ∙ 简体中文 ∙ 繁體中文 ∙ +/− Mass Communication Specialist 3rd Class Jarod Hodge
Public domain
Datei:F18Überschallflug.jpg
F/A-18F Super Hornet of VFA-122 Flying Eagles flying close to the speed of sound at the 2008 MCAS Miramar air show. Eigenes Werk Realbigtaco
CC BY-SA 3.0
Datei:FA-18 going transonic.JPG
Icon for works, tasks, tools and so on File:Icon tools.png : http://www.icon-king.com/projects/nuvola/ David Vignoni, STyx
CC BY 2.5
Datei:Icon tools.svg
Mach'scher Kegel Eigenes Werk Funkmich008
CC BY-SA 4.0
Datei:Mach'scher Kegel.png
Machscher Kegel (schematisch). Im Diagramm wird die Ausbreitung von Schallwellen eines sich bewegenden Objekts für die Fälle v<v s , v=v s und v>v s dargestellt (v: Geschwindigkeit des Objekts; v s : Schallgeschwindigkeit). Im letzteren Fall bildet sich eine Stoßwelle, der Machsche Kegel, aus (blau). Eigenes Werk Zykure
CC BY-SA 3.0
Datei:Mach.svg
MachscherKegelDynWBHerleitung Eigenes Werk Funkmich008
CC BY-SA 4.0
Datei:MachscherKegelDynWBHerleitung.png
Schlieren photography of an airplane model with straight wings, at Mach 1.2 . NASA NASA
Public domain
Datei:Schlierenfoto Mach 1-2 gerader Flügel - NASA.jpg